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Abstract—This paper details and solves a stability-constrained
optimal power flow (SCOPF) for inverter-based AC microgrids.
To ensure sufficient stability margin during optimal generation, a
small-signal stability constraint is embedded into the conventional
OPF. This constraint is developed by satisfying a Lyapunov stabil-
ity condition. A reduced-order model of the microgrid is adopted
to alleviate the computational burden involved in solving the
resulting SCOPF. Further, to tackle the non-convexity in SCOPF
due to the presence of nonlinear power flow equations and
stability constraint, two distinct convex relaxation approaches,
namely semi-definite programming and parabolic relaxations, are
developed. A penalty function is added to the objective function
of the relaxed SCOPF, which is, then, solved sequentially to
obtain a globally optimal solution. The efficacy of the proposed
SCOPF is evaluated by performing numerical studies on multiple
benchmarks as well as real-time studies on a 4-bus microgrid
system built in a hardware-in-the-loop setup.

Index Terms—AC Microgrids, Convex optimization, Optimal
power flow, Relaxation, Stability.

I. INTRODUCTION

AJORITY of distributed generation units are interfaced
Mwith AC microgrids using inverters. Droop mechanism
is a well-established decentralized control tool for proportional
power sharing among inverters. This control approach alone
does not ensure optimal operation or respect operational
requirements usually dictated by the optimal power flows
(OPFs) paradigms. An OPF-based droop adjustment is given
in [1]. Varying droop parameters could cause small-signal
stability issues [2], [3]. This paper details a OPF paradigm with
improved small-signal stability margin that satisfies generation
limits, power flow limits, and voltage constraints.

To enhance the stability margin, supplementary control
loops [4], auxiliary stabilizers [5], [6], L;—adaptive droop
control [7], virtual droop frameworks [8], and lead compen-
sators [9], are given as remedies. All these control methods are
tuned for a selected range of operating points. Alternatively,
the stability margin can be preventively improved by a proper
generation dispatch. A stability-constrained optimal power
flow (SCOPF) with stability constraints formulated based on
state matrix sensitivities with respect to OPF variables is
detailed in [10], [11]. The stability constraint is presented as
a semi-definite programming (SDP) problem in [12], and the
resulting SCOPF is transformed to a nonlinear optimization
problem and solved using the interior-point method. SCOPF
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might lead to infeasible solutions due to its non-convex
nature and the rigid threshold limits of the stability constraint
[12]-[14]. To obtain a feasible solution, sequential quadratic
programming and sequential optimization techniques, based
on eigenvalue sensitivity matrix, are presented in [13] and
[14], respectively. These dispatching schemes are developed
for conventional power systems with synchronous generators,
and rely on interior-point methods that are sensitive to initial
conditions. The SCOPF of synchronous generator-based power
systems in [15] uses the SDP relaxation technique to convexify
the stability constraint based on a bilinear matrix inequality
(BMI). This relaxation approach could potentially become
computationally inefficient with the increase in number of
generators and size of the power system.

Proper handling of the stability constraint is critical to
the optimal-stable-feasible solution of the SCOPF problem in
inverter-based microgrids. This paper illustrates the bilinear-
matrix inequality (BMI) stability constraint derived from the
Lyapunov stability condition. This constraint ensures sufficient
stability margin by forcing the system spectral abscissa above
a certain threshold. Since droop-controlled microgrids have
myriad states [2], stability assessment considering detailed
models will be computationally expensive. Alternatively, we
adopt a reduced-order model [16] that incorporates only the
dominant dynamics. Moreover, the BMI SCOPF is typically
a non-convex and NP-hard problem due to nonlinear power,
voltage, and stability constraints. To resolve this, nonlinear
constraints are linearized by lifting SCOPF problem using
auxiliary variables, and applying convex relaxations to result-
ing formulation. The optimal solution of the relaxed problem
may not guarantee the feasibility with the original problem.
A linear penalty function is added to the objective function of
the relaxed problem, which is then solved sequentially until
the optimal solution is obtained. The key contributions of the
paper can be summarized as follows:

« SCOPF formulation for inverter-populated microgrids,

« convexifying the non-convex SCOPF using two relaxation
approaches,

« achieving the globally optimal and feasible solution using
sequential penalization.

The remainder of the paper has the following organization:
Section II details notations used throughout the paper. The
SCOPF problem is formulated in Section III. Section IV
presents lifting, relaxation, and penalization of SCOPF to
obtain a globally optimal solution. Numerical and experimen-
tal validations are given in Section V. Finally, Section VI
concludes the paper.



II. NOTATIONS

The italic lower case (a), bold-italic lower case (a), and
bold-italic upper case (A) indicate scalars, vectors, and ma-
trices, respectively. R, C, S, and H"™ represent sets of real
numbers, complex numbers, n X n symmetric matrices, and
hermitian matrices, respectively. The diagonal matrix with the
‘a’ vector of diagonal terms is shown by [a]. [a]™ indicates
the matrix formed by repeating the vector a for n columns.
()7 and (-)* indicate the transpose and conjugate transpose
of a matrix, respectively. I" and 0" indicate identity and zero
matrices of size n x n, respectively. The diagonal elements
vector of a square matrix is shown by diag{-}. The absolute
value of a vector or a scalar is given by |-|. The trace of a
matrix is shown by tr{-}. The frobenius norm of a matrix or
a vector is represented by ||-||. The real and imaginary parts
of the complex numbers are denoted by Re{-} and Im{-},
respectively. The notation a - b indicates the element-wise
product of vectors a and b.

The AC microgrid has ' = {1,2,....n} set of buses on
the power distribution network, £ = {1,2,...,1} C N x N\ set
of distribution lines, and G = {1,2,...,n8} set of inverters.
The vectors of the injected active and reactive powers are
p¢ € R™ ! and ¢¥ € R™*!, respectively. An inverter
incidence matrix, that locates inverters on the distribution bus,
is defined as G € {0,1}"**". The bus admittance matrix is
given by Y € C"*". The from and to admittance matrices
are represented as Y, Y € C"", and their respective
branch-incidence matrices as L, L € {0,1}/*". Loads are
considered as constant complex impedances, and included as
shunt elements in Y. v& € C"**1 is the vector of bus voltages
at point of coupling, and v? € C"~"**1 is the vector of all
remaining buses, such that v = v#|Jv®. v° is the terminal
voltages at inverter output terminals.

ITI. STABILITY-CONSTRAINED OPTIMAL POWER FLOW
A. OPF in AC Microgrids
The OPF for an AC microgrid is formulated as

minimize h(p®) (la)
subject to  G' (p® + jq®) = d + diag{vv*Y™*}  (1b)
diag{f, vv*}-}*} < (lc)
diag{L vv*Y*} < fmax (1d)
pmin < pg < pmax (le}
qmin < q_q < qma.\c (lf}
(vmin)‘z < |'B 2 < (UmaX)’z (lg}

varaibles v € C"*! p& € R™*! ¢% € R"**1,

h(p?) is assumed to be a quadratics cost function [17]

h(p®) = (p%) " [e2]P® + ¢/ p* + ¢ 17, @)

where c2, ¢1, and ¢q are the cost coefficients. The nodal power
balance is enforced using (1b). The line flows are limited in
either directions using (lc) and (1d). The active and reactive
powers generated by individual inverters are bounded using
(le) and (If), respectively. The constraint (1g) bounds the

voltage magnitude within [v™", »™2X], Next, additional con-
straints concerning system stability, inspired by the microgrid
dynamics in [2], are needed to strengthen (1).

B. Incorporating Stability Constraint
To formulate the stability constraint, first, the microgrid is
modeled as a set of differential-algebraic equations,

& = f(z,2),
0=g(x,z),

(3a)
(3b)

where f and g represent the vectors of non-linear differential
and algebraic equations of a microgrid, respectively.  and
z are the vectors of state and algebraic variables of size ny
and n,, respectively. To reduce the computational burden, a
374 order inverter model [16] is adopted. The voltage and
current controllers with LC filter in Fig. 1 have high closed-
loop bandwidth compared to the power controller module, and
one can safely assume that these control loops reach a quasi
steady-state fast. Thus, the vector of differential equations, f,
with state variables @ = [p',q".d'|T € R"<*1, is composed
of

b= - ptw-Refo”- (i)}, ()
f]=—wc'q+wc-1m{v°-(i°}*}7 (4b)
6= (w— t"-’com)G‘-’no\nv (4c)

Here, w. € R™*! is the cutoff frequency of the low-pass
filters used in power controller modules (Fig. 1). p € R™**!
and ¢ € R™ ! are the filtered active and reactive power
vectors, respectively. v© € C"*! = ™ 4 ju® and ° €
Cn*>*t = §° 4 ji* are the inverter terminal’s voltage and
current, respectively. wyom and w are the microgrid nominal
frequency and inverter operating frequency, respectively. 4 is
the vector of inverter power angles with respect to a common
reference, usually the inverter at bus 1 (i.e., weom = w1). The
operating frequency w is obtained using

W = Wyom — M- P+ m? - p“pt-. (3)

where p°™ is the active power set-point provided by the OPF,
and my, is the p — w droop constant.

The vector of algebraic equations g, with algebraic variables
z = [(2°YT, (4°Y)7]" € R? x 1, are given by

ill!l _ RC{Y(U“ _ i(} . zrr}}.

i°9 = Im{Y (v° — i° - 2°)}.

(6a)
(6b)
Y is the Kron-reduced admittance matrix of the distribution

network [16], ¢ is the impedance of the line connecting an
inverter to the power distribution network, and

v’ = (v +n?- g™ —n?-q)-(cosd +jsind), (7)

where g°"* and v are the optimal reactive power and voltage
set-points provided by the OPF, respectively. n, is ¢—v droop
constant.

Proposition 1. Consider a microgrid system defined by (3a)
and (3b). Its small-signal stability, with a minimum decay rate
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Fig. 1: AC microgrid schematic, inverter control, SCOPF optimization, and data flow

of 1, can be assured [18] iff there exits a symmetric positive
definite matrix M that satisfies

A'M+MA=<-2M, ®)
where A is the microgrid state matrix.

Proof. Linearizing (3a) and (3b) at the operating point
(o, z¢), using Taylor series expansion, gives

. d Iz
Ax 5;5 gg Ax
“lae s ' ©)
[*. [#
0 5% 55 Az
The partial differential matrices %ﬁ, %‘; f—j%, and %g in (9)
are given by (10)-(13), respectively. The MP in (10) is
-my my 0 - 0
—-my 0 m}
MP = (14)
-my 0 0 mbg

where m? indicates droop constant of i'" inverter. G and B
are, respectively, the real and imaginary components of the
Kron-reduced admittance matrix Y.

Defining A(i,i°.8,q) = 2L, B(d.q) = 2L, C(5.,q) =
g—g, and D = %E, and eliminating the algebraic variables z,
(9) can be reformulated [19] as,

&= Aw, (15)
where A € R™<*"x s the state matrix obtained by
A= A(i°,i°8,q) — B(d,q)(D)"'C(d,q). (16)

Consider a Lyapunov energy function, V = &' Mx, where
M e §™ is a symmetric positive definite matrix. Differenti-
ating V/, one has

v

&' Mz +a' M,
= (ﬁ:c)TM:c +a' MAz,

— 2 (A M+ MA). (17)

For the microgrid to have a minimum damping (or decay rate)
7, the necessary condition on the Lyapunov function [18] is

V < —-23E. (18)
From (17) and (18)
A'M+MA=<-2yM, (19a)
M = 1™, (19b)
Proof of Proposition 1 is completed. O

To interlink the inverter internal variables with the OPF
variables, additional constraints are formulated as

ref

v8 = (v —nv.q)-(cosd +jsind) —1°- z°, (20)
i° = Y8, (1)
p + ig = diag{i°(i°)*[2°]} + p? + iq?,. (22)

The OPF in (1), with additional constraints (19)-(22), con-
stitute a SCOPF for an inverter-dominant microgrid. The con-
straints (1b)-(1g) are quadratic functions of the bus voltage v.
The state matrix A in (19a), and the constraints (20) and (22),
are non-linear functions of 2°, g, and &. These non-linearities
make problem non-convex. In the next section, the SCOPF
problem is lifted and relaxed to make it computationally
tractable.

IV. LIFTING, RELAXATION, AND PENALIZATION

A. Lifted Formulation

The constraints (1b)-(1g) can be convexified by defining an
auxiliary matrix W € H"™ [20] as

W £ po*.

Tg convexify the constraints (20) and (22), and the state matrix
A in (19a), variables 6° € R"s*1 §% ¢ Rmex1 §9° c Rrs>1,
&% € R"*1 and a new vector, up, € R™*! ¥V k € G, are
defined for each inverter as

(23)

8¢ £ cosd, &% £5sind, (24a)
69 2 g-cosd, 6T £ q-sind, (24b)
wg £ [00,029, 68,03, qr 01, 6] Vk € G. (24¢)



B -—[w“] - [w“ .n9 - (§°9 . sind + °? - cos 5)} - [w" . (v'f —nd.q)- (59 sind — i°9 - cos 5)}

T om* [w“ -n9 . (4° . cos § — i°¢ - sin §) — w“] [w" (vef —n9.q)- (2°! - cosd 4 4°9 - sin 6}] (10)
MP Ung—l Ons 1

of [[we - (v"f —n9-q)-cosd] [w: (v —ni-q)-sind]

— = W (v'f —nd-q)-sind]  —[we- (v*f —n9-q)-cosd] (11)

Oz Ong_l [}ng—l

a_g B [ (C? i [nll . CcOS J]rag _ ? . [n(l . sin 6]115) C:: ( ref _ pa., q) . sin 6]115 + J@[(vmf —nd. q) . COS J]rﬂ.g (12)

dx — |0" (G-[n%-siné]" + B-[n4-cosd]"”) B-[(vf —niq)- sind]"" — G[(v"*" —n-q) - cosd|"”

a_g B ’Jrn.s “+ é . [Tc]ﬂ.i‘ - B . [:Ec]ns _é [$C]11’3 B ;[Tc]ns (13)

az - B- ['f‘c]“g + G. [ifc]ns JmS -I-G ['r' ]n" _B [xc]ns

Using (24c¢), an auxiliary matrix for each inverter, X €
S"« ¥ k € G, is defined as

X 2 upul, (24d)

that satisfies a set of constraints I/ given as
(e “"’)TX el — o =0, (252)
(el ) X el — 6 =0, (25b)
(e )T X el — (eI )T Xel™ =0, (25¢)
(e )" X;e,\ +(e} ) Xyef —1=0, (25d)
(€)) X el + () ) Xye'¥ — g =0, (25¢)
(e0) Xre) +(e) ) Xpe) —(el) Xpel =0. (25f)

FAPR L R LU L B L 598

e. , e, ,e., e, e, e.  and e are the standard
basis for respective elements of the vector wy.

From (23)-(24d), the constraints (1b)-(1g), (20), (22) and
sub-matrices A(i°?,i°9,4,q), B(d,q), and C(4,q) can be
written as the linear functions of uy, and X as in (27),
(28), (29), and (30). The state matrix A and the stability
constraint (19a) are still non-linear due to the presence of
B(D)'cC, ATM, and M A terms. To overcome this, two
auxiliary matrices, FE and L, are defined

’Ebb Ebc
E = _ECb Ecc]
. [ 3(5“,5“, 6(1(‘.‘ 6(1:-‘) B(J", 6:4! 6(1(‘.! Jq:-;)
S AT e os cac sas 2T, e cs cac cas (26a)
C (8°,6°,6%,6%)| |C (6¢,6°%, 69, 6%)
B 'me Lma a M .
L= _Lam La.aj| = [AT] [M A] {Zﬁb)

where 0(6",6“,6“",6“”) = (D)~'C(6% 8°,8%,6%). D is
a constant matrix for a given distribution network.

The lifted formulation of the SCOPF is given in (27), where
(27b)-(271) are linear and convex. The non-convexity present
in the original SCOPF is encapsulated by the constraints (270)-
(27r).

B. Convex Relaxation

To ensure that (27) is computationally tractable, non-
convex constraints (270)- (27r) are relaxed. This paper details
two distinct relaxation approaches, a SDP relaxation and a
computationally-efficient parabolic relaxation.

1) SDP relaxation: The SDP relaxation of the non-convex
constraints in the lifted SCOPF problem (27) is given as

W —wv" =0, (31a)
Ehh Eb:: B(&C? 65: 5‘1C: 5({5) B(éc, 65._ 5C|c_. ‘sqz) T -
E® E<|T|E (6,6, 6, 6%)| |& (50, 6°, 59,59 =

(31b)

me Lma M N

[Lnill Lan:|_|:/_i'|':| [MA] = 0: (310)

Xi—wup =0 YkeQg. (31d)

Remark 1. The constraints (31a)-(31d) can be cast as

(W v
D 62)
r Ebh Ebc BT(rSC._ 63, 6qc! 5({5)

E(:b E(:(: C’;‘T{é(:! 6“,6(“:,6(15) to.

_BT (6(:,6ﬁ,6‘1‘:,6‘15) é(ac:,é.\i, 6"“,6“5) Irxz

(33)
’LTI]III L(I\;l M
an L;ln _rfi—r >___ 0’ (34)
| M A I
-X;L- Uy .
_u}'; 1 } =0, vk € G. (35)

The above remark transforms the quadratic matrix inequal-
ities (31b)-(31d) to convex linear matrix inequalities making
the SCOPF more tractable. Nevertheless, with the increase in
number of inverters and system size, solving SCOPF in (27)
may become computationally challenging.

2) Parabolic relaxation: This is an alternative relaxation
technique with a reduced computational burden. The non-
convex problem is transformed to a convex quadratic constraint
quadratic programming problem. The parabolic relaxation [20]
of the non-convex voltage constraint, (270), is given by

lvj + vel> < Wyj + Wik + (Wi + Wig)

|'j— Ml <W’3J+““ (TJVLJ-}-H’J;}V

|vj + Jml < Wi + Wi = j(Wij — W)

lv; — juk|® < Wjj + Wik +j(Wi; — W)
o[> < W

j. k) € L (36a)
j. k) € L (36b)
j. k) € L(36¢)
j.k) € £(36d)
Vj € N.(36e)

v(j
(U
v(j
V(i

The parabolic relaxation of (27p)-(27r) can be obtained using
the following proposition.



minimize h(p*®) (27a)
subject to

OPF constraints:

G'(p+jq) = d + diag{WY"} (27b)
diag{L WY} < fme (27¢)
diag{L WY} < ™= (27d)
Pt < p < p™ (27e)
" <q<q™ 270
(0"™")° < diag(W) < (") (27g)
i =G Yo (27h)
G v=v""(64j8) —n? (6% +j6%) —i°-2° (27i)
i+ = ((er") Xreh " + (el") Xiel™)zE

+pl+ial Ykeg 7))
Stability constraints:

I L 7 4 Ol (27K)
M > I™ (27)

Auxiliary variable constraints:

A=AX,)-E VYkeg (27m)
we = (120,459, 6%, 6%, qu, 67°, 67" Vk € G (27n)
W = ‘U’U‘ (2?0)
EPb pbe B B(acaas,t‘sqc,aqS) B(écﬁas!(sqc!&qs) T 270
E® E<|T|C7(6°,6°,6%,6%)| | O (6°,6°, 6%, 6%) P
mm g ma M R
[Lnnl Lilil} = Ii_rfi-r} [M A] (Z?Q)
Xk = [ii'dr !iq‘ 5E‘ :. Tk 6331 62511— [ikd'- izq'- 6: i“ q; 52C’ 6::8]
VkegG (27r)
X, [0 000, 05, 65, i, 07,0 e VY keg (27s)

varaibles

vE @:"X], pg ERHQ;XI’ qg c Rngxl.. e Cnﬁ‘xl!
g e ™ §° e R™X §° c R™X, 50 e R,
§¥ e R™X M e S™, W eH", AcR™""x,

P o P
and X, € R™ ™Y ke G.

where

U is set of constraints defined as (25),

The matrices A(X ), B(6°,6°,8%,8), and
C(8°, 8%, 6%,8%) are defined as (28), (29), and (30), respectively.

Proposition 2. Assume R € R"™**, § € R**", and T € S*"
are the matrices expressed by

rr T rs
T - |:TSI‘ TSS (36ﬂ

The parabolic relaxation [21] is formulated as
TS+ T+ 215 2 Irj + si® Wik € {1,271}, (36g)
Tf; + 155 — 2]}*’{; > |[r; — 3;-_||2 Vi, ke {1,2,..,r}. (36h)

] = [R", S]"[R", S].

Here, v; and sy are the j'" and k™ column vectors of the
matrices R and S", respectively.

While the relaxed SCOPF problem is computationally
tractable, it may not guarantee a feasible globally optimal
solution for the original problem in (1). Therefore, a sequential
penalization approach is adopted.

C. Sequential Penalization

The solution obtained from the lifted problem (27a)-(27m)
with the relaxed SCOPF constraints (32)-(35) or (36a)-(36h)
may not be always feasible with the original problem (1). To
resolve this, the SCOPF is modified by adding a linear penalty
function p to the objective function in (27a)

minimize h(p?) + p(W,v, E, B,C,L,M, A, X, u) (37a)

subject to (27b)-(27m), (37b)
(32)-(35) SDP relaxed constraints, (37¢)
or
(36a)-(36h) Parabolic relaxed constraints, (37d)
where
p(W.v,E.B,C.L,M,A X, u) (38)

£ (tr{W P} — v Pv — v* Pvy + v Pvg) + 1 (tr{ E}—
2%r{BoB"} — 2:{CoC" } + tr{BoB}} + tr{CoCy })
’U.g(tl‘{L} — 2tl‘{MuMT} — 2t1’{ﬁ[]fiT} + tl‘{M[]ME}

+ tl‘{fiotﬁ:-, }) + p‘,gtl‘{Xk - 21&0,{’1.&—';; + ugku—g}‘ } (39)

vy, By, C‘U, M, ziﬂ._ ug, are the given initial values. jiq, pia,
and 3 are the penalty positive coefficients valued at 0.1, 0.5,
and 5, respectively. Here, P is the penalty function coefficient
matrix for the voltage which can be calculated as in [20].

For an arbitrary initial point, the SCOPF (37) is solved
sequentially until a feasible solution to (1) is obtained. It can
then reduce the value of the objective function in subsequent
iterations until a (near) global optimal solution is found [22].

V. VALIDATION AND VERIFICATION
A. Numerical Studies

The efficacy of both SDP and parabolic convex relaxations
are evaluated on several standard test systems. All numerical
studies are performed using MATLAB/CVX platform on a 64-
bit personal computer with 3.4GHz Intel i7 quadcore processor
and 64 GB RAM. The droop constants mP = 1.5 x 10~% and
n9 = 7.2 x 10~* are chosen. In Table I, upper bound (UB)
indicates the globally optimal cost obtained after sequential
penalization, Lower bound (LB) indicates the optimal cost

TABLE I: Upper bounds, lower bounds, and computational
times for SCOPF with SDP and parabolic relaxations.

SDP Parabolic

Test system | n® UB LB time (s) LB time (s)
9-bus 3 | 423476 | 3984.51 0.44 3900.42 0.42
14-bus 5 | 796332 | TOT6.86 0.61 6561.84 0.53
30-bus 6 563.15 523.77 0.95 498.90 0.61
57-bus T | 4372837 39803.98| 2.88 35740.58 1.26
39-bus 10 | 39241.56| 33307.43| 6.83 32607.87 3.33
80pegase 12| 5830.64 | 5127.92 | 19.95 | 4226.49 8.69

24 _jeee_rts | 33 - H56877.63| 3487.61| 53263.30 728.30
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obtained for the relaxed problem without penalty, and com-
putational time indicates the time taken by the optimization
solver to solve the relaxed problem without sequential penal-
ization. From Table I, for smaller systems with less number
of inverters, the SDP relaxation offers LBs closer to the
global solution with similar computational time as compared
to parabolic relaxation. As the number of inverters and system
size increases, SDP becomes computationally more expensive.

B. Hardware-in-the-Loop Validation

The proposed SCOPF is tested on a 4-bus,4-inverter micro-
grid system [23], shown in Fig. 2. Inverters power limits and
their cost coefficients are detailed in Table II. The microgrid’s
base power and voltage are 0.1MV A and 480V, respectively.

| MicroLabBox = '

i

n i r =5 v*
! Measure }' :

i . ¥ ¥ '
' &Iﬁlller [~~~ *‘: Voltage Current |
[ A controller  controller
— % H ‘

v ‘

» SPWM |

-

VSC

minimize hip?) +p {
Subject to (31b)-(31m), (40a)-(40h)

Fig. 2: The microgrid test system implemented using HIL
(Typhoon HIL), control unit (dSPACE), and optimization unit
(personal computer), with information flow shown.

The nominal frequency of the microgrid is wyom = 377rad/s.
This microgrid has variable-impedance loads, with 0.707
lagging power factor, at all buses. The complete microgrid
is emulated in two Typhoon HIL604 units. The stability
constraint threshold in SCOPF is chosen as n = 0.1. Inverters
employ droop control schemes with mP = 1.04 x 10~ and
n9 = 2.3 x 10~*. These controllers are realized using two
dSPACE MLBx control boxes. A personal computer (PC) with
a 8-core, 3.5GHz Xeon processor, and 64GB RAM solves the
SCOPF using MATLAB/CVX optimization tool, and provides
the optimal set-point information to the dSPACE.

1) Microgrid performance without and with SCOPF: The
microgrid system is emulated in the HIL environment for 30
minutes. Every 20 seconds, loads at all buses are randomly
varied following a poisson distribution. Figures 3 and 4 depict
the microgrid operation without and with SCOPEF, respectively.
Without SCOPF, the set-point values were held constant at
p°P' = 0, ¢°P* = 0, and v°P* = 480V. The voltages and
the reactive power generations are within the limits for both
scenarios, as shown in Fig. 3(c),(d) and Fig. 4(c),(d). The
active power load variations are shared equally among all the
inverters due to the constant active power set-point (p°P') and
identical droop constants (m/P), as shown in Fig. 3(b). On the
contrary, using SCOPF, the optimal set-points are provided at
every 2 minutes, leading to unequal, but cost effective powers
supplied by the inverters, as shown in Fig. 4(b). The average
total generation cost for 30 minutes, with the droop control
alone, is 253.5723. Using SCOPF, the average total generation
cost reduces to 233.7836. Moreover, it can be observed from
Fig. 3(a) and 4(a) that the operating frequency, with the droop
control alone, deviates further from the nominal value (wpom)
compared to when SCOPF is employed.

TABLE II: Generational cost coefficients and power limits

Imin max min max

Bus | 2 | 1 [ e | P p q q
I 13220 0 1.0 | -0.80 | 0.80
2 | 16|28 0 0 1.0 | -0.80 | 0.80
3 120550 0 1.0 | -0.80 | 0.80
4 | 16|24 0 0 1.0 | -0.80 | 0.80
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Fig. 3: Operation with droop control and varying loads at bus

1 and 4: (a) frequency, (b) active power, (c) reactive power,

(d) voltage magnitude, and (e) total generation cost.

2) Comparing conventional OPF and SCOPF: The advan-
tage of SCOPF over the conventional OPF is demonstrated
here. Figures 5 and 6 portray the microgrid performance with
the operating set-points dictated by OPF and SCOPF, respec-
tively. In both scenarios, initially, the microgrid operates with
load impedance of (5+1i5) €2 at all buses. At ¢ = {,, the load
at bus 3 is disconnected. Set-points provided by SCOPF lead
to better damping as compared to that of conventional OPF,
as observed from Fig. 5(a) and Fig. 6(a). At { = {9, the load
is added back to bus 3. The microgrid driven by OPF exhibits
negative damping leading to an oscillatory instability, while
SCOPF provides stable operation with a positive damping.

V1. CONCLUSION

This paper addresses the stable and optimal operation of
inverter-populated AC microgrid. SCOPF provides the optimal
operating set-points to the inverters and exhibits improved
damping characteristics as compared to the operation provided
by the conventional OPFE. The stability constraints for the
SCOPF is formulated as a bilinear-matrix inequality (BMI)
constraint derived from a Lyapunov stability candidate. The
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Fig. 4: Microgrid operation with SCOPF and varying loads
at bus 1 and 4: (a) frequency, (b) active power, (c) reactive
power, (d) voltage magnitude, and (e) total generation cost.

SCOPF formulation is non-convex due to the presence of
multiple non-linear terms. To make it computationally effi-
cient, we have relaxed this problem using two distinct convex
relaxation techniques, namely, SDP and parabolic relaxations.
Further, to guarantee a globally optimal solution for SCOPF,
the sequential penalization method is adopted. To prove solu-
tion scalability, several numerical studies were carried out on
multiple standard IEEE and European test systems. Further, the
feasibility and the efficacy of the proposed SCOPF is evaluated
on a 4-inverter microgrid system emulated in a HIL setup.
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