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Rank-2 Matrix Solution for Semidefinite Relaxations of Arbitrary
Polynomial Optimization Problems

Ramtin Madani, Ghazal Fazelnia and Javad Lavaei

Abstract—This paper is concerned with the study of an arbi-
trary polynomial optimization via a convex relaxation, namely a
semidefinite program (SDP). The existence of a rank-1 matrix
solution for the SDP relaxation guarantees the recovery of a
global solution of the original problem. The main objective of this
work is to show that an arbitrary polynomial optimization has
an equivalent formulation in the form of a sparse quadratically-
constrained quadratic program (QCQP) whose SDP relaxation
possesses a matrix solution with rank at most 2. This result
offers two new insights into the computational complexity of
polynomial optimization and combinatorial optimization as a
special case. First, the complexity is only related to finding a
rank-1 matrix in a convex set where it is guaranteed that a
rank-2 matrix can always be found in polynomial time. Second,
the approximation of the rank-2 SDP solution with a rank-
1 matrix enables the retrieval of an approximate near-global
solution for the original polynomial optimization. To derive this
result, three graph sparsification techniques are proposed, each
of which designs a sparse QCQP problem that is equivalent to
the original polynomial optimization.

I. INTRODUCTION

Optimization theory deals with the minimization of an
objective function subject to a set of constraints. This area
plays a vital role in the design, control, operation, and analysis
of real-world systems. The development of efficient optimiza-
tion techniques and numerical algorithms has been an active
area of research for many decades. The goal is to design a
robust, scalable method that is able to find a global solution
in polynomial time. This has been fully answered for the
class of convex optimization problems that includes all linear
and some nonlinear problems [1]–[3]. Convex optimization
has found a wide range of applications across engineering
and economics [4]. In the past several years, a great effort
has been devoted to casting real-world problems as convex
optimization. Nevertheless, several classes of optimization
problems, including polynomial optimization and quadratically
constrained quadratic program (QCQP) as a special case, are
nonlinear, non-convex, and NP-hard in the worst case [5],
[6]. In particular, there is no known effective optimization
technique for integer and combinatorial optimization as a small
subclass of QCQP [7], [8]. Given a non-convex optimization,
there are several techniques to find a solution that is locally
optimal. However, seeking a global or near global solution
in polynomial time is a daunting challenge. There is a large
body of literature on nonlinear optimization witnessing the
complexity of this problem.
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To reduce the computational complexity of a non-convex
optimization, several convex relaxation methods based on lin-
ear matrix inequality (LMI), semidefinite programming (SDP),
and second-order cone programming (SOCP) have gained
popularity [1]–[9]. These techniques enlarge the possibly non-
convex feasible set into a convex set characterizable via convex
functions, and then provide the exact or a lower bound on
the optimal objective value associated with a global solution.
The effectiveness of this technique has been substantiated in
different contexts [10]–[20]. The SDP relaxation converts an
optimization with a vector variable to a convex optimization
with a matrix variable, via a lifting technique. The exactness
of the relaxation can then be interpreted as the existence
of a low-rank (e.g., rank-1) matrix solution for the SDP
relaxation. Several papers have studied the existence of a low-
rank solution to matrix optimizations with linear and LMI
constraints [21]–[25].

In this paper, we aim to prove that an arbitrary polynomial
optimization can be equivalently converted to a sparse QCQP
whose SDP relaxation possesses a matrix solution with rank
at most 2. Since the existence of a rank-1 solution guarantees
the recovery of a global solution of the original problem, this
result implies that the computational complexity of a general
polynomial optimization is only related to the hardness of
transforming an SDP solution with rank at most 2 to an
optimal rank-1 matrix. To elaborate on this result, consider
a polynomial optimization

min
x∈Rq

P0(x) (1a)

s.t. Pk(x) ≤ 0 for k = 1, 2, . . . , l (1b)

where P0(x), . . . , Pl(x) are arbitrary polynomial functions.
Assume that this optimization has a feasible solution. The
above problem can be reformulated as the QCQP

min
u∈Rn

uTM0u (2a)

s.t. uTMku ≤ yk for k = 1, 2, . . . , r (2b)

for some (fixed) non-unique numbers n, r, and y1, y2, . . . , yr.
In this problem, the variable u consists of multiple copies of
the entries of x as well as some auxiliary parameters, and the
matrices M0,M1, . . . ,Mr are all sparse. The above QCQP
can be cast as

min
W∈Sn

trace{M0W} (3a)

s.t. trace{MkW} ≤ yk for k = 1, 2, . . . , r (3b)
W � 0 (3c)
rank{W} = 1 (3d)

where the positive semidefinite matrix W plays the role of
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uTu. The SDP relaxation of the QCQP problem (2) can be
obtained by dropping the rank constraint from the above non-
convex optimization, which results in the convex program

min
W∈Sn

trace{M0W} (4a)

s.t. trace{MkW} ≤ yk for k = 1, 2, . . . , r (4b)
W � 0. (4c)

One primary objective of this paper is to show that the non-
unique conversion from (1) to (2) can be carried out in such a
way that the SDP relaxation (4) will have a solution Wopt with
rank at most 2. Also, this solution can be obtained in polyno-
mial time. In other words, the original polynomial optimization
(1) is equivalent to the rank-constrained optimization (3) with
the property that the latter optimization becomes tractable after
relaxing its hard constraint rank{W} = 1 to rank{W} ≤ 2.
This result has two implications:

i) The NP-hardness of various subclasses of polynomial
optimization, e.g., combinatorial optimization, is only
related to the existence of a not rank-1 but low-rank
SDP solution, where the upper bound on the rank is
constant and does not depend on the size of the original
optimization.

ii) By approximating the low-rank solution of the SDP
relaxation with a rank-1 matrix, an approximate solution
of the original problem may be obtained whose closeness
to the global solution can also be upper bounded.

These results offer a new insight into the computational com-
plexity of polynomial optimization (Property (i)) and enable
to seek a near-global solution (Property (ii)).

A. Related Work

The SDP relaxation technique provides a lower bound on the
minimum cost of the original problem, which can be used for
various proposes such as the branch and bound algorithm [2].
To understand the quality of the SDP relaxation, its optimal
objective value is shown to be at most 14% different from the
optimal cost for the MAXCUT problem [26].

The maximum possible gap between the solution of a
graph optimization and its SDP relaxation is defined as the
Grothendieck constant of the graph [27], [28]. This constant
has been derived for some special cases in [29]. The paper [30]
shows how a complex SDP relaxation may solve the max-cut
problem. This approach has been generalized in several papers
[11]–[18]. If the SDP relaxation provides the same optimal
objective value as the original problem, the relaxation is said
to be exact. The exactness of the SDP relaxation has been
verified for a variety of problems [19], [31]–[34]. For instance,
our work [19], [35]–[37] has explored the SDP relaxation for
the optimal power flow (OPF) problem, which is regarded
as the most fundamental optimization problem for electrical
power networks. Our work shows that the relaxation is exact
for a large class of OPF problems due to the physics of a
power gird. The exactness of an SDP relaxation could be
heavily formulation dependent. Indeed, we have designed a
practical circuit optimization with four equivalent QCQPs in

[20], where only one of the formulations has an exact SDP
relaxation.

In the case where the SDP relaxation is not exact, the
existence of a low-rank SDP solution may still be helpful.
To support this claim, we have proposed a penalized SDP
relaxation for the OPF problem in [20] and successfully used
it to derive near global solutions for 7000 instances of OPF.
In a general context, the existence of a low-rank solution to
matrix optimizations with linear and LMI constraints has been
extensively studied in the literature [21], [22]. The papers [23],
[38], [39] provide an upper bound on the lowest rank among
all solutions of a feasible LMI problem. Based on the same
approach, a constructive method has been proposed in [40]
to obtain a low-rank solution in polynomial time. Although
the proven bound in [39] is tight in the worst case, many
examples are known to possess solutions with a lower rank
due to their underlying sparsity patterns [41], [42]. A rank-
1 matrix decomposition technique is developed in [24] to
find a rank-1 solution whenever the number of constraints is
small. This technique is extended in [25] to the complex SDP
problem. The paper [40] presents a polynomial-time algorithm
for finding an approximate low-rank solution.

This paper is in part related to our recent work [33], [34]
that studies the exactness of the SDP relaxation through a
graph-theoretic approach. In that work, the structure of an
arbitrary polynomial optimization is mapped into a generalized
weighted graph, where the topology of the graph captures the
sparsity of the optimization and each edge is associated with
a weight set capturing possible patterns in the coefficients of
the optimization. It is shown that the SDP relaxation is exact
if its underlying generalized weighted graph satisfies some
algebraic properties.

Given an arbitrary polynomial optimization problem, our
technical approach consists of the following three steps:

• Quadratic Formulation: First, the polynomial optimiza-
tion (1) is converted to an equivalent QCQP problem
of the form (2). Then, the zero/nonzero pattern of the
matrices M0,M1, . . . ,Mr is mapped into a simple graph
G. The notion of treewidth is adopted to quantify the
sparsity level of this non-unique quadratic formulation.

• Low-rank Solution Recovery: Since the SDP relaxation
of the obtained QCQP does not have a unique solution
in general, consider an arbitrary SDP solution. Given this
SDP solution and an arbitrary tree decomposition of G
with width t, a convex optimization is designed such that
every solution of this problem is a solution of the SDP
relaxation and has rank at most t+ 1.

• Graph Sparsification: Finally, three different methods
are proposed to sparsify the QCQP problem by increasing
its dimension and yet maintaining the equivalence. This
will lead to a sparse QCQP formulation for the polyno-
mial optimization (1) whose associated graph has a small
treewidth. The sparsification process guarantees that the
SDP relaxation of the resulting sparse QCQP has a rank
1 or 2 matrix solution. This low-rank solution can be
obtained in polynomial time via the aforementioned low-
rank solution recovery technique.
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B. Notations

The notations used throughout this paper are described
here. R, Z+, Sn and Hn denote the sets of real numbers,
nonnegative integer numbers, n× n symmetric matrices, and
n×n Hermitian matrices, respectively. Sn+ and Hn+ denote the
restrictions of Sn and Hn to positive semidefinite matrices.
Re{W}, Im{W}, rank{W}, and trace{W} denote the real
part, imaginary part, rank, and trace of a given scalar/matrix
W, respectively. The notation W � 0 means that W is
Hermitian and positive semidefinite. Given a matrix W, its
(l,m)-th entry is denoted as Wlm. Likewise, the i-th enetry
of a vector x is denoted as xi. The notation ei denotes the i-th
ordinary Cartesian unit vector in Rn. R[x] denotes the set of
all polynomials with the variable x and real coefficients. The
superscript (.)opt is used to show the globally optimal value
of an optimization parameter. The symbol (·)∗ represents the
conjugate transpose operator. The notation |x| denotes the size
of a vector x.

The set of vertices and edges on a directed/underected graph
G is shown by VG and EG respectively. For two simple graphs
G1 = (V1, E1) and G2 = (V2, E2), the notation G1 ⊆ G2 means
that V1 ⊆ V2 and E1 ⊆ E2. G1 is called a subgraph of G2

and G2 is called a supergraph of G1. A subgraph G1 of G2 is
said to be an induced subgraph if for every pair of vertices
vl, vm ∈ V1, the relation (vl, vm) ∈ E1 holds if and only if
(vl, vm) ∈ E2. In this case, G1 is said to be induced by the
vertex subset V1. The notation G1∪G2 also refers to the graph
G = (V1 ∪ V2, E1 ∪ E2).

II. QUADRATIC FORMULATION

The objective of this section is twofold. First, a systematic
method will be proposed to formulate the polynomial opti-
mization (1) as a QCQP. Second, a rank-constrained formula-
tion of the problem will be studied using the bisection method
and the SDP relaxation technique.

Every polynomial optimization admits infinitely many
quadratic formulations. To delve into this property, a simple
illustrative example will be provided below.

Example 1. Assume that q = 3 and r = 2. Consider the
polynomial optimization (1) with the objective function

P0(x) , x3
1 + x2

2 + 3x1x2x3 (5a)

and the constraints

P1(x) , x2
1 − 1 ≤ 0 (5b)

P2(x) , x2
3 − 1 ≤ 0. (5c)

Define U(x) as the vector of monomials

U(x) , [1 x1 x2 x3 x2
1 x1x2]T . (6)

The polynomials P0(x), P1(x) and P2(x) can be expressed

as quadratic functions of the entries of U(x):

P0(x) = U2(x)U5(x) + U3(x)2 + 3 U4(x)U6(x) (7a)

P1(x) = U2(x)2 − U1(x)2 (7b)

P2(x) = U4(x)2 − U1(x)2 (7c)

On the other hand, the function U(x) is invertible, meaning
that x can be uniquely recovered from U(x). Moreover, it can
be shown that the image of the function U(x) is equal to the
set of all vectors u ∈ R6 satisfying the following conditions:

u1 = 1 (8a)

u5u1 − u2
2 = 0 (8b)

u6u1 − u2u3 = 0 (8c)

It can be concluded from the abovementioned facts that
the polynomial optimization (1) is equivalent to the QCQP
problem

min
u∈R6

u2u5 + u2
3 + 3u4u6 (9a)

s.t. u2
2 − u2

1 ≤ 0 (9b)

u2
4 − u2

1 ≤ 0 (9c)

u5u1 − u2
2 = 0 (9d)

u6u1 − u2u3 = 0 (9e)
u1 = 1 (9f)

In particular, every feasible point x ∈ R3 of (1) can be
mapped into a feasible point u ∈ R6 of (9) and vice versa.
The above QCQP is referred to as a quadratic formulation
of the polynomial optimization (1) .

To generalize the idea manifested in Example 1, consider a
set of polynomials

Q1(x), Q2(x), . . . , Qp(x) ∈ R[x]

and a set of matrices

Q1,Q2, . . . ,Qp,P0,P1, . . . ,Pl ∈ Sn

such that

Pk(x) = U(x)TPkU(x), k = 0, 1, . . . , l (10a)

Qi(x) = U(x)TQiU(x) i = 1, 2, . . . , p (10b)

where

U(x) , [ 1 xT Q1(x) Q2(x) · · · Qp(x)]T (11)

and n = p + q + 1 denotes the size of the parametric vector
U(x). Equation (10a) is indeed a quadratic representation
of the polynomial Pk(x) in terms of the entries of U(x).
Moreover, equation (10b) describes the interrelation between
the entries of U(x) (e.g., see (8)).

Definition 1. For a triplet
(
{Qi(x)}pi=1, {Qi}pi=1, {Pk}lk=0

)
satisfying the relations given in (10), define a simple directed
graph H denoted as the dependency graph, whose set of
vertices is

VH , {U1(x), U2(x), . . . , Un(x)} (12)

and for every 1 ≤ i, j ≤ n, the directed edge (Ui(x), Uj(x))
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belongs to EH if and only if

j > q + 1 and ‖Qj−q−1ei‖2 6= 0. (13)

Then
(
{Qi(x)}pi=1, {Qi}pi=1, {Pk}lk=0

)
is called a quadratic

representation for {Pk(x)}lk=0 if

a) H is an acyclic directed graph with no loops.
b) The set of root vertices of H is equal to
{U1(x), ..., Uq+1(x)} or equivalently {1, x1, x2, . . . , xq}.

The number n is called the dimension of the quadratic
representation.

Lemma 1. Suppose that
(
{Qi(x)}pi=1, {Qi}pi=1, {Pk}lk=0

)
is

a quadratic representation for {Pk(x)}lk=0. The polynomial
optimization (1) is equivalent to the QCQP problem:

min
u∈Rn

uTP0u (14a)

s.t. uTPku ≤ 0 for k = 1, 2, . . . , l (14b)

uTQiu = eTi+q+1u for i = 1, 2, . . . , p (14c)

u1 = 1, (14d)

In addition, every globally optimal solution xopt can be
mapped to an optimal solution uopt, and vice versa, through
the equation uopt = U(xopt).

Proof. It follows from Property (b) in Definition 1 and equa-
tion (10b) that for every j > q + 1, Uj(x) (or equivalently
Qj−q−1(x)) can be uniquely expressed in terms of the mem-
bers of the set

{Ui(x) |Ui(x)→ Uj(x), 1 ≤ i ≤ n}. (15)

With no loss of generality, assume that Ui(x) is a root vertex
induced by {Ui(x), Ui+1(x), . . . , Un(x)} for every i ∈ {2 +
q, ..., n}.

By induction and using equation (10b), it can be shown
that Ui(x) can be expressed as a function of the elements of
{U1(x), U2(x), . . . , Ui−1(x)} for i ∈ {2+q, ..., n}. Similarly,
ui can be expressed as the same function of the elements
of {u1, u2, . . . , ui−1}, provided u is a feasible solution of
Optimization (14). This implies that for every feasible solution
u, there is a vector x such that u = U(x). This completes the
proof.

Lemma 2. Suppose that {Pk(x)}lk=0 are polynomials of de-
gree at most d, consisting of s monomials in total. There exists
a quadratic representation of {Pk(x)}lk=0 with dimension n,
where

n ≤ 1 + q × s× (blog2(d)c+ 2) (16)

Proof. For every natural number k, the monomial xki can be
written as the product of some distinct members of the set

Ai , {x2j

i | j ∈ {0, . . . , blog2(d)c+ 1}} (17)

This can be achieved using the binary expansion of the expo-
nent k. Let A be a set of monomials defined as A1∪ . . .∪An.
Consider a monomial xα1

1 xα2
2 . . . x

αq
q with degree at most d

(i.e., α1 + · · · + αq ≤ d). This monomial can be written as
the product a1a2 . . . ac, where a1, a2, . . . , ac are some distinct

monomial members of A and c ≤ q (blog2(d)c+ 1). Define

b1 , a1a2, b2 , a1a2a3, . . . , bc−1 , a1a2 . . . ac (18)

Let U(x) be a vector containing number 1, all members of the
set A, and the vector [b1 · · · bc−1] for each of the s monomials
xα1

1 xα2
2 . . . x

αq
q ’s in {Pk(x)}lk=0. Notice that the size of the

vector U(x) , denoted as n, satisfies the inequality (16). On
the other hand, one can write

bc−1 = xα1
1 xα2

2 . . . xαq
q (19a)

bi = bi−1ai+1, i = 2, ..., c− 1 (19b)

Using the above recursions, it is to verify the existence of a
quadratic representation associated with the vector U(x).

By combining Lemmas 1 and 2, it can be inferred that the
polynomial optimization (1) can be equivalently converted to
a QCQP problem of the form (14) after introducing a modest
number of auxiliary variables and constraints. This QCQP
problem can also be transformed into the form (2) containing
no linear terms in the objective and constraints. To achieve
this goal, two operations are required:
• Replace the equality constraint (14c) with two inequality

constraints:

uT (2Qi − e1e
T
i+q+1 − ei+q+1e

T
1 )u ≤ 0 (20a)

uT (−2Qi + e1e
T
i+q+1 + ei+q+1e

T
1 )u ≤ 0 (20b)

• Replace the linear constraint (14d) with

uT (e1e
T
1 )u ≤ 1 and uT (−e1e

T
1 )u ≤ −1 (21)

Although these two constraints are equivalent to u2
1 = 1

as opposed to u1 = 1, since

uTMku = (−u)TMk(−u), (22)

the sign of u1 is not important.

A. Rank-Constrained Formulation

So far, it has been shown in the preceding subsection that
an arbitrary polynomial Optimization (1) can be formulated
as a QCQP problem (2) by introducing a modest number
of auxiliary variables and additional constraints (the problem
description still has a polynomial size). We may also proceed
with a linear representation of the constraints and objective
function in (2) by defining a new matrix variable W ∈ Sn.
To this end, define

W , uuT . (23)

Every quadratic term uTMku has a linear representation with
respect to W as follows:

uTMku = trace{uTMku}
= trace{MkuuT }
= trace{MkW}, k = 0, 1, ..., r. (24)

On the other hand, an arbitrary matrix W ∈ Sn can be factor-
ized as uuT for some vector u if W � 0 and rank{W} = 1.
Therefore, it can be concluded that the optimization problem
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(1) and its quadratic formulation (2) admit a rank-constrained
formulation:

min
W∈Sn

trace{M0W} (25a)

s.t. trace{MkW} ≤ yk for k = 1, 2, . . . , r (25b)
W � 0 (25c)
rank{W} = 1 (25d)

B. Feasibility Problem and Bisection Approach

In order to solve the rank-constrained optimization (25),
we exploit the well-known epigraph technique to translate the
objective of this optimization into a suitable constraint. For
this purpose, consider the problem

min
y0∈R,W∈Sn

y0 (26a)

s.t. trace{MkW} ≤ yk for k = 0, 1, . . . , r (26b)
W � 0 (26c)
rank{W} = 1 (26d)

(note that y0 is a variable, whereas y1, ..., yr are all known).
It is trivial that the constraint

trace{M0W} ≤ y0 (27)

is active for every optimal solution (yopt
0 ,Wopt), meaning that

trace{M0W
opt} = yopt

0 . (28)

Therefore, yopt
0 can be interpreted as the optimal cost for

the rank-constrained optimization (25). To solve this problem
using the reformulation (26), define

S (M0,M1, . . . ,Mr; y0, y1, . . . , yr) ,{
W ∈ Sn+

∣∣ trace{MkW} ≤ yk for k = 0, 1, . . . , r
}

(29)

Every matrix W in the above set provides an upper bound

y+
0 , trace{M0W}. (30)

on yopt
0 (i.e., the solution of the polynomial optimization (1)).

A lower bound y−0 may also be provided using the SDP relax-
ation method. Let ε0 , y+

0 −y
−
0 and ε be the tolerance of error

for finding the optimal objective value. It is straightforward to
argue that the bisection method provided below results in a
feasible point (ŷ0,Ŵ) for problem (25) with a cost ε-close to
the global minimum.

Bisection Method:
1) Set

i := 0, y+ := y+
0 and y− := y−0 (31)

2) If there exists a rank-1 matrix Ŵ in the set

S
(

M0,M1, . . . ,Mr;
y+ + y−

2
, y1, . . . , yr

)
,

then update the upper bound as

y+ :=
y+ + y−

2
, (32)

otherwise, update the lower bound as

y− :=
y+ + y−

2
. (33)

3) If
i ≤ dlog2 (ε0/ε)e , (34)

then set i := i+ 1 and go to Step 2. Otherwise, set

ŷ := y+, (35)

and terminate.
The number of iterations needed in Bisection Method is
logarithmic, where the existence of a rank-1 matrix in the
convex set S should be verified in each iteration. Hence,
this method enlightens the equivalence of solving an arbitrary
polynomial optimization (1) and the problem of searching for a
rank-1 member of S. In other words, the complexity of solving
a polynomial optimization can be traced back to checking
the existence of a rank-1 matrix a modest number of times
(namely, dlog2 (ε0/ε)e). Since this membership verification is
NP-hard in the worst case, the following question arises: what
is the smallest number k for which the existence of a matrix
W ∈ S with the property rank{W} ≤ k could be checked
in polynomial time? To address this question, one objective of
this paper is to show that the polynomial optimization (1) has
a quadratic formulation associated with some sparse matrices
M0, ...,Mr such that its corresponding set S can be searched
for a rank-2 matrix in polynomial time. In other words, the
smallest number k is equal to 2.

C. SDP Relaxation

To reduce the complexity of the rank-constrained optimiza-
tion (25), one may drop its rank constraint rank{W} = 1.
The resulting convex program is called an SDP relaxation of
the QCQP problem (2). The relaxation is said to be exact if
the QCQP problem and its relaxation have the same optimal
value. Under this circumstance, the relaxation has a rank-1
solution. In the case where the relaxation is not exact, it is
highly desirable to explore the rank of the minimum-rank
solution of the SDP relaxation. As long as this is a small
number, a penalization method may be able to produce a near-
optimal rank-1 SDP solution (see [43] and [20]). Thus, the
following question arises: what is the smallest number k for
which the SDP relaxation of the QCQP problem (2) has a
solution Wopt with the property rank{Wopt} ≤ k? It will be
shown later in this work that k = 2. In other words, there exists
a quadratic formulation whose SDP relaxation has a rank 1 or
2 solution. In addition, this possibly hidden low-rank solution
can be found in polynomial time.

III. LOW-RANK SOLUTION RECOVERY

The SDP relaxation of a sparse QCQP problem may have
many matrix solutions including low-rank and high-rank so-
lutions. The objective of this section is twofold. First, the
connection between the rank of a low-rank SDP solution and
the sparsity level of the problem is studied. Second, a convex
program is proposed to find a low-rank solution (if such a
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Fig. 1: A minimal tree decomposition for a ladder

solution exists). To proceed with this part, we first review some
preliminaries about the tree decomposition of a graph.

A. Preliminaries on Graph Theory

Definition 2. The representative graph of an n×n symmetric
matrix W, denoted by G(W), is a simple graph with n vertices
whose edges are specified by the locations of the nonzero off-
diagonal entries of W. In other words, two arbitrary vertices
i and j are connected if Wij is nonzero.

Definition 3 (Treewidth). Given a graph G, a tree T is
called a tree decomposition of G if it satisfies the following
properties:

1) Every node of T corresponds to and is identified by a
subset of VG . Alternatively, each node of T is regarded
as a group of vertices of G.

2) Every vertex of G is a member of at least one node of T .
3) Tk is a connected graph for k = 1, 2, ..., n, where Tk

denotes the subgraph of T induced by all nodes of T
containing the vertex k of G.

4) The subgraphs Ti and Tj have a node in common for
every (i, j) ∈ EG .

The width of a tree decomposition is the cardinality of its
biggest node minus one (recall that each node of T is indeed
a set containing a number of vertices of G). The treewidth of
G is the minimum width over all possible tree decompositions
of G and is denoted by tw(G).

Note that the treewidth of a tree is equal to 1. Figure 1
shows a graph G with 6 vertices named a, b, c, d, e, f , together
with its minimal tree decomposition T . Every node of T
is a set containing three members of VG . The width of this
decomposition is therefore equal to 2.

Definition 4 (Enriched Supergraph). Given a graph G ac-
companied by a tree decomposition T of width t, G is called
an enriched supergraph of G derived by T if it is obtained
according to the following procedure:

1) Add a sufficient number of (redundant) vertices to the
nodes of T , if necessary, in such a way that every node
includes exactly t+1 vertices. Also, add the same vertices
to G (without incorporating new edges). Denote the new
graphs associated with T and G as T̃ and G̃, respectively.

2) Index the nodes of the tree T̃ as V1, V2, . . . , V|T | in such a
way that for every r ∈ {1, ..., |T |}, the node Vr becomes
a leaf of T r defined as the subgraph of T̃ induced by
{V1, . . . , Vr}. Denote the neighbor of Vr in T r as Vr′
(note that Vr ∈ VG).

3) Set G|T | := G̃ and set O|T | as the empty sequence. Also
set k = |T |.

4) Let Vk\Vk′ = {o1, . . . , os} and Vk′ \Vk = {w1, . . . , ws}.
Set

Gk−1 := (VGk , EGk ∪ {(o1, w1), . . . , (os, ws)}) (36)

Ok−1 := Ok ∪ (o1, . . . , os) (37)
k := k − 1 (38)

5) If k = 1 set G := G1, O := O1 and terminate; otherwise
go to step 4. G is referred to as an enriched supergraph
of G derived by T .

Figure 2 delineates the process of obtaining an enriched
supergraph G of the graph G depicted in Figure 1. Bold lines
show the edges added at each step of the algorithm.

B. Low-rank Recovery via Convex Optimization

Consider the QCQP problem (2). Let

G , G(M0) ∪ G(M1) ∪ . . . ∪ G(Mr) (39)

be defined as the sparsity graph associated with the prob-
lem (2). The graph G = (VG , EG) describes the zero-nonzero
pattern of the matrices M0,M1, . . . ,Mr. This graph can also
be interpreted as follows:
• There is a one to one mapping between the vertices of G

and the entries of the variable u in (2). This means that
for every 1 ≤ i ≤ n, there is a unique vertex v ∈ VG
corresponding to ui. We adopt the notation v ↔ ui to
show the correspondence.

• For every pair of distinct vertices v1, v2 ∈ VG , we have
(v1, v2) ∈ EG if and only the product uiuj has a nonzero
coefficient in at least one of the constraints (2b) or the
objective function (2a) where v1 ↔ ui and v2 ↔ uj .

Let Ḡ be an enriched supergraph of G, obtained from a tree
decomposition of width t. For simplicity, we label the vertices
of G and Ḡ as

VG = {1, 2, . . . , n} and VḠ = {1, 2, . . . ,m}. (40)

such that E(G) ⊆ E(Ḡ).

Theorem 1. Consider an arbitrary solution Ŵ ∈ Sn+ to the
SDP relaxation problem (4) and let Z ∈ Sm be a matrix with
the property that G(Z) = Ḡ. Let W

opt
denote an arbitrary

solution of the optimization

min
W∈Sm

trace{ZW} (41a)

s.t. W kk = Ŵkk for k ∈ VG , (41b)

W kk = 1 for k ∈ VḠ \ VG , (41c)

W ij = Ŵij for (i, j) ∈ EG , (41d)

W � 0. (41e)

Define Wopt as the n-th principal minor of W
opt

. Then,
Wopt satisfies the following two properties:

a) Wopt is an optimal solution to the SDP relaxation (4).
b) rank{Wopt} ≤ t+ 1.
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Fig. 2: An enriched supergraph G of the graph G given in Figure 1: (a) the steps of the algorithm, (b) the resulting enriched
supergraph (new edges are shown in bold).
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Fig. 3: To sparsify a quadratic formulation, the variable xa is replaced by
two new variables xa1 and xa2 , and then the constraint xa1 = xa2 is added
to preserve equivalence: (a) original graph (b) the graph after applying Vertex
Duplication Procedure.
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(b)

Fig. 4: To sparsify a quadratic formulation, two auxiliary variables xz1 and
xz2 are added, and then the product xaxb is replaced by x2

z1
− x2

z2
where

xz1 = (xa+xb)/2 and xz2 = (xa−xb)/2: (a) original graph (b) the graph
after applying Edge Elimination Procedure.

Proof. See [44] for the proof.

The matrix Wopt is referred to as a subsolution of (41).
Theorem 1 states that a (low-rank) solution with a guaranteed
bound on its rank can be constructed from an arbitrary (high-
rank) solution of the SDP relaxation (4) by means of the
convex optimization (41).

IV. GRAPH SPARSIFICATION

Consider the polynomial optimization (1). It has been shown
in Lemmas 1 and 2 that this optimization admits a quadratic
formulation. Indeed, it is straightforward to verify that opti-
mization (1) has infinitely many equivalent quadratic formu-
lations. A question arises as to which quadratic formulation is
more amenable to the SDP relaxation technique. To address
this problem, consider an arbitrary quadratic formulation of

  

  

(a)

  

  

(b)

Fig. 5: A change of coordination can remove a clique form the sparsity
graph: (a) original graph in which any of the dashed edges may exist, (b) the
graph for the reformulated problem in which the vertices corresponding to
the new variables xā, xb̄, xc̄, xd̄ are all isolated.

the polynomial optimization (1):

min
ũ∈Rñ

ũTM̃0ũ (42a)

s.t. ũTM̃kũ ≤ ỹk for k = 1, 2, . . . , r̃ (42b)

and let G̃ = G(M̃0)∪. . .∪G(M̃r̃) denote the sparsity graph of
this optimization. Theorem 1 enables to find a matrix solution
for the SDP relaxation of the above QCQP with rank at most
tw(G̃)+1. In the case where the matrices M̃0, ..., M̃r̃ are not
sparse, the number tw(G̃) is large and hence the obtained SDP
solution may not have a good rank-1 approximation. The main
objective of this part is to introduce certain operations that
can be performed to transform (42) into an equivalent QCQP
with a sparse formulation. These operations will be spelled
out below, which are categorized as: (i) vertex duplication,
(ii) edge elimination, and (iii) change of coordinates.

Notation 1. Consider a quadratic formulation of optimiza-
tion (1) with the graph G̃. Given a vertex v in G̃, the unique
variable of the quadratic formulation associated with the
vertex v is denoted as xv .

A. Vertex Duplication

Our first graph sparsification approach resembles a well-
established technique in distributed computation. The main
idea is to replace a global variable of the optimization with two
local variables and then impose a consistency constraint re-
flecting the fact that the two new variables are identical copies
of the same global variable. This sparsification approach is
delineated below.

Vertex Duplication Procedure: Consider an arbitrary
quadratic formulation (42). Let a be a vertex of the sparsity
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graph belonging to a cycle C, where b and c denote the
neighboring vertices of a in the cycle C. We perform the
following operations:
• Replace the variable xa with two auxiliary variables xa1

and xa2 .
• Replace the product xaxb with xa1xb and the product
xaxc with xa2xc in all of the constraints and the objective
function of the QCQP.

• For every other neighbor of a, namely the vertex d,
replace xaxd with either xa1xd or xa2xd in all of the
constraints and the objective function of the QCQP.

• Add the consistency constraint xa1 = xa2 to the quadratic
formulation.

Vertex Duplication Procedure is illustrated in Figure 3,
where solid lines represent existing edges and dashed lines
show possible edges. As can be seen, this procedure manipu-
lates the graph in three ways: (i) replacing the vertex a with
two new vertices a1 and a2, (ii) distributing the neighbors of a
between a1 and a2, and (iii) connecting vertex 1 to a1 and a2

(vertex 1 corresponds to the first entry of ũ).

Theorem 2. Consider an arbitrary quadratic formulation (42)
of the polynomial optimization (1) associated with a graph G̃.
If Vertex Duplication Procedure is applied to the graph G̃ a
sufficient number of times, it yields a sparse quadratic formu-
lation of the form (2) that is equivalent to optimization (1)
and its SDP relaxation has a solution Wopt such that

rank{Wopt} ≤ 3 (43)

Moreover, this SDP solution can be found in polynomial time.

Proof. Consider a graph with the property that every cycle of
the graph passes through a certain vertex v. In this case, all
cycles of the graph share one central vertex. It can be verified
that such a graph has a trivial tree decomposition of width 2,
where each node of the tree consists of two connected vertices
of the graph as well as the central vertex v. On the other
hand, it can be observed in Figure 3 that Vertex Duplication
Procedure makes the vertex 1 a hub if the procedure is repeated
a sufficient number of times. This occurs if the underlying
sparsification technique is proceeded until the vertex 1 belongs
to every cycle of the graph. Let the obtained graph be denoted
as G associated with a sparse QCQP (2). The treewidth of G is
at most 2 and, as a result, Theorem 1 can be deployed to find
a solution Wopt with rank at most 3 for the SDP relaxation
of the sparse QCQP (2).

Theorem 2 derives a sparse QCQP formulation (2) from an
arbitrary (dense) quadratic formulation (42). It can be shown
that this sparsification increases the number of variables of the
optimization by twice the number of edges of G̃ in the worst
case (two new variables for each edge).

B. Edge Elimination
The previous sparsification approach was focused on re-

ducing the degree of each vertex by means of introducing
multiple copies of the same vertex. Another approach is to
boost the sparsity of the graph by eliminating specific edges
of the graph. This idea will be described below.

Edge Elimination Procedure: Consider an arbitrary quadratic
formulation (42). Let (a, b) be an edge of its underlying
sparsity graph, corresponding to the variables xa and xb. We
perform the following operations:
• Add two auxiliary variables xz1 and xz2 .
• Impose two additional constraints:

xz1 =
xa + xb

2
and xz2 =

xa − xb
2

(44)

• Replace every instance of the product xaxb in the QCQP
problem with x2

z1 − x
2
z2 .

Edge Elimination Procedure is illustrated in Figure 4. As
can be seen, this procedure manipulates the graph in three
ways: (i) adding two new vertices z1 and z2, (ii) removing the
edge (a, b), and (iii) connecting vertex 1 to z1 and z2.

Theorem 3. Consider an arbitrary quadratic formulation (42)
of the polynomial optimization (1) associated with a graph G̃.
If Edge Elimination Procedure is applied to the graph G̃ a
sufficient number of times, it yields a sparse quadratic formu-
lation of the form (2) that is equivalent to optimization (1)
and its SDP relaxation has a solution Wopt such that

rank{Wopt} ≤ 2 (45)

Moreover, this SDP solution can be found in polynomial time.

Proof. The proof is in line with that of Theorem 2. The only
difference is that the resulting graph G will have treewidth 1
as opposed to 2. This is due to the fact that Edge Elimination
Procedure produces a star graph with vertex 1 as its central
node, and hence this procedure is able to remove all cycles of
the graph.

Corollary 1. An arbitrary polynomial optimization (1) has
an equivalent rank-constrained formulation in the form
of (3) with the property that the relaxation of its constraint
rank{W} = 1 to rank{W} ≤ 2 makes the resulting problem
polynomial-time solvable.

Proof. According to Theorem 3, the polynomial optimiza-
tion (1) has an SDP relaxation with a solution rank{Wopt} ≤
2. This implies that adding the constraint rank{W} ≤ 2 to
that particular SDP relaxation does not affect the optimal cost.
The proof is completed by noting that adding the constraint
rank{W} = 1 to the same SDP relaxation makes the problem
equivalent to optimization (1).

C. Change of Coordinates

Consider an arbitrary quadratic formulation (42) of the poly-
nomial optimization (1) associated with a graph G̃. Assume
that at least one of the matrices M̃0, ..., M̃r̄ is not sparse
and contains a high number of nonzero entries. In this case,
the graph G̃ will have large cliques. Since the treewidth of a
graph is lower bounded by the size of its largest clique, the
existence of a large clique in the graph G̃ destroys the low-
rank property of the solutions of optimization (41) provided
in Theorem 1. Under this circumstance, the vertex duplication
and edge elimination procedures described earlier can be
utilized to lower the treewidth. Another approach is to change
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the coordinates of the feasible set of the optimization in such
a way that the cliques of the graph all disappear. For example,
consider the vertices a, b, c, and d in Figure 5 and assume that
some of these vertices are connected to one another. The high-
level idea to transform the tuple (xa, xb, xc, xd) into another
set of variables (xā, xb̄, xc̄, xd̄) such that the vertices become
isolated. In what follows, a technique will be proposed to
achieve this goal.

Consider the quadratic formulation (42) . Let

M̃k = NkΛkN
T
k , k = 0, 1, ..., r̃ (46)

be the eigendecomposition of M̃k, meaning that the i-th
column of Nk ∈ Rñ×ñ is a normalized eigenvector of
M̃k corresponding to its i-th eigenvalue and Λk ∈ Rñ×ñ
is a diagonal matrix whose i-th diagonal entry is the i-th
eigenvalue of M̃k, for every i ∈ {1, . . . , ñ}. Define

ũ(k) , NT
k ũ, k = 0, 1, ..., r̃ (47)

and

ū ,
[

ũT ũ(0)T · · · ũ(r̃)T
]T
. (48)

The next theorem proposes a quadratic formulation with
respect to the variable ū, whose SDP relaxation has a matrix
solution of rank 1 or 2.

Theorem 4. The QCQP problem

min
ū

ũ(0)TΛ0ũ(0) (49a)

s.t. ũ(k)TΛkũ(k) ≤ ỹk for k = 1, 2, . . . , r̃ (49b)

ũ(k) = NT
k ũ for k = 0, 1, . . . , r̃ (49c)

(subject to the implicit constraint (48)) is a quadratic formula-
tion of the polynomial optimization (1) with the property that
its SDP relaxation has a rank 1 or 2 solution that can be
obtained in polynomial time.

Proof. The QCQP problem (49) can be cast as the standard
QCQP (2). Let G denote the sparsity graph of this formulation.
Notice that since the matrices Λ0,Λ1, . . . ,Λr̃ are all diagonal,
the graph G does not have any edge created by the objective
function (49a) or the constraint (49b). This implies that all
edges of G are due to the constraint (49c). On the other hand,
the constraint (49c) can be expressed in a quadratic form as

ũTRkũ = 0, (50)

where Rk is a square matrix of appropriate dimension with the
property that every entry of Rk not belonging to the first row
or first column of this matrix is equal to zero. As a result, the
constraint (49c) can only yield edges in G that are incident
to the vertex corresponding to 1 (the first entry of ū). This
implies that every edge of the graph G passes through the
vertex 1. Therefore, G is a tree and tw(G) = 1. Now, it follows
from Theorem 1 that the SDP relaxation of (49) has a rank
1 or 2 solution that can be obtained in polynomial time. This
completes the proof.

D. Final Remarks and Future Work

Consider a QCQP formulation of the polynomial optimiza-
tion (1). There are two important factors about the SDP
relaxation of this QCQP problem: (i) optimal objective value
of the SDP relaxation that serves as a lower bound on
the globally minimum cost of (1), and (ii) the rank of the
minimum-rank solution of the SDP relaxation. It turns that
the proposed sparsification techniques reduce the rank, but
loosen the lower bound at the same time. On the positive
side, this rank reduction facilitates the approximation of the
SDP solution by a rank-1 matrix. On the negative side,
the sparsification process worsens the lower bound. Hence,
the sparsification introduces a trade-off between the rank of
the SDP solution and its optimal objective value. Based on
our empirical studies, Vertex Duplication Procedure or Edge
Elimination Procedure should be repeated until a relatively
low-rank, but not necessary rank-2, solution is obtained. We
have applied our technique to the optimal decentralized control
problem in [42] and observed in many numerical examples that
the sparsification process enables the recovery of a near-global
optimal control very efficiently. An important future research
direction is the investigation of the abovementioned trade-off.

A feasible, global, near-global, or approximate solution of
the polynomial optimization (1) may only be retrieved from a
rank-1 SDP matrix. Consider an SDP relaxation with a low-
rank solution. Now, three strategy could be taken to find a
near-global (sub-optimal) solution of (1):
• Since Wopt has only a few undesirable (nonzero) eigen-

values, it may be converted to an approximate solution
via a local search algorithm. Based on the eigenvalue
decomposition, it is straightforward to design an iterative
algorithm with the property that the rank of the solution
does not increase at any iteration of the algorithm. This
leads to a sequence of low-rank matrices, which may
converge to a rank-1 solution. The obtained solution may
ultimately need to be approximated by a rank-1 matrix if
it is not ultimately rank-1.

• The unwanted nonzero eigenvalues of Wopt may be
eliminated by means of a penalization (regularization)
technique.

• Another technique is to directly approximate Wopt with
a rank-1 matrix by solving a convex optimization.

We have tested the above rank-1 approximation techniques on
several instances of the optimal decentralized control problem
and 7000 instances of the optimal power flow problem in
[42] and [20] (see [45]–[49] and the references therein for an
overview of these two problems). The above ad-hoc methods
worked with a very high rate of success in our simulations.
However, the development of a systematic approximation
technique supported by a rigorous theory is left as future work.
The design of such a rounding technique makes it possible to
understand how much approximation is needed to make a hard
optimization problem polynomial-time solvable.

V. CONCLUSIONS

The objective of this paper is to investigate the compu-
tational complexity of an arbitrary polynomial optimization.
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Three graph sparsification techniques are proposed to design
a sparse quadratically-constrained quadratic program (QCQP)
that is equivalent to the original polynomial optimization. To
convexify the QCQP problem, a semidefinite programming
(SDP) relaxation is deployed. The existence of a rank-1 matrix
solution for the SDP relaxation guarantees the recovery of a
global solution of the polynomial optimization. It is proved
that the SDP relaxation always has a rank 1 or 2 solution. This
result implies that the NP-hardness of polynomial optimization
is related to going from rank 2 to rank 1 as opposed to
converting a high-rank matrix to a low-rank matrix. This
result helps answer one fundamental question in optimization
theory: how much approximation is needed to make a hard
optimization problem polynomial-time solvable? This question
may be addressed by investigating the gap between the rank-2
SDP solution and its best rank-1 approximation.
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