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1 Introduction

Polynomial optimization is the problem of minimizing a polynomial function within
a feasible set that is characterized by polynomial functions. Physics laws and char-
acteristics of dynamical systems are widely modeled using polynomials. As a result,
polynomial optimization arises in numerous scientific and engineering applications,
such as electric power systems [42, 43], imaging science [20], signal processing [40],
automatic control [1, 19], quantum mechanics [11, 27], and cybersecurity [15, 16].
This paper is on a subclass of polynomial optimization, referred to as quadratically-
constrained quadratic programming (QCQP), where polynomials are quadratic. The
results in this paper extend to polynomial optimization by transformation to QCQP,
as shown in Appendix A. The development of optimization algorithms for QCQP
has been an active area of research for decades. Due to the barriers imposed by
NP-hardness, the focus of some of the research efforts has shifted from designing
general-purpose algorithms to specialized methods that are robust and scalable for
specific application domains. Notable examples for which methods with guaranteed
performance have been offered in the literature include the problems of multisensor
beamforming in communication theory [23], phase retrieval in signal processing [12],
and in machine learning [5, 46].

This paper advances a popular framework for the global analysis of QCQP that
builds hierarchies of semidefinite programming (SDP) [50] relaxations [14, 29, 37,
45, 51, 56]. SDP has been critically important for constructing strong convex re-
laxations of non-convex optimization problems. In particular, forming hierarchies of
SDP relaxations [14, 29, 36–38, 45, 51, 56] has been shown to yield the convex
hull of non-convex problems. Geomans and Williamson [24] show that the SDP re-
laxation objective is within 14% of the optimal value for the MAXCUT problem
on graphs with non-negative weight. SDP relaxations have played a central role in
developing numerous approximation algorithms for non-convex optimization prob-
lems [25, 26, 39, 49, 62–65]. They are also used within branch-and-bound algorithms
[9, 13] for non-convex optimization. One of the primary challenges for the application
of SDP hierarchies beyond small-scale instances is the rapid growth of dimensional-
ity. In response, some studies have exploited sparsity and structural patterns to boost
efficiency [7, 33, 34, 47, 48]. Another direction, pursued in [1, 2, 6, 44, 53], is to use
lower-complexity relaxations as alternatives to computationally demanding semidef-
inite programming relaxations. A relaxation is said to be exact if it has the same
optimal objective value as the original problem. The exactness of the SDP relaxation
has been verified for a variety of problems [10, 33, 35, 58].

1.1 Contributions

This paper is concerned with non-convex quadratically-constrained quadratic pro-
grams for which SDP relaxations are inexact. In order to recover feasible points for
QCQP, we incorporate a linear penalty term into the objective of SDP relaxations
and show that feasible and near-globally optimal points can be obtained for the orig-
inal QCQP by solving the resulting penalized SDPs. The penalty term is based on
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an arbitrary initial point. Our first result states that if the initial point is feasible and
satisfies the linear independence constraint qualification (LICQ) condition, then pe-
nalized SDP produces a unique solution that is feasible for the original QCQP and its
objective value is not worse than that of the initial point. Our second result states that
if the initial point is infeasible, but instead is sufficiently close to the feasible set and
satisfies a generalized LICQ condition, then the unique optimal solution to penalized
SDP is feasible for QCQP. Lastly, motivated by these results on constructing feasi-
ble points, we propose a heuristic sequential procedure for non-convex QCQP and
demonstrate its performance on benchmark instances from the QPLIB library [21] as
well as on large-scale system identification problems.

The success of sequential frameworks and penalized SDP in solving bilinear ma-
trix inequalities (BMIs) is demonstrated in [28, 30, 32]. In [4], it is shown that penal-
ized SDP is able to find the roots of overdetermined systems of polynomial equations.
Moreover, the incorporation of penalty terms into the objective of SDP relaxations are
proven to be effective for solving non-convex optimization problems in power sys-
tems [42, 43, 66, 67]. These papers show that penalizing certain physical quantities
in power network optimization problems such as reactive power loss or thermal loss
facilitates the recovery of feasible points from convex relaxations. In [28], a sequen-
tial framework is introduced for solving BMIs without theoretical guarantees. Papers
[30, 32] investigate this approach further and offer theoretical results through the no-
tion of generalized Mangasarian-Fromovitz regularity condition. However, these con-
ditions are not valid in the presence of equality constraints and for general QCQPs.
Motivated by the success of penalized SDP, this paper offers a theoretical framework
for general QCQP and, by extension, polynomial optimization problems.

1.2 Notations

Throughout the paper, scalars, vectors, and matrices are respectively shown by italic
letters, lower-case italic bold letters, and upper-case italic bold letters. The symbols
R, Rn, and Rn×m denote the sets of real scalars, real vectors of size n, and real ma-
trices of size n×m, respectively. The set of n× n real symmetric matrices is shown
by Sn. For a given vector a and a matrixA, the symbols ai andAij respectively indi-
cate the ith element of a and the (i, j)th element ofA. The symbols 〈· , ·〉 and ‖ · ‖F
denote the Frobenius inner product and norm of matrices, respectively. The notation
| · | represents either the absolute value operator or cardinality of a set, depending on
the context. The notation ‖ · ‖2 denotes the `2 norm of vectors, matrices, and matrix
pencils. The n × n identity matrix is denoted by In. The origin of Rn is denoted
by 0n. The superscript (·)> and the symbol tr{·} represent the transpose and trace
operators, respectively. Given a matrix A ∈ Rm×n, the notation σmin(A) represents
the minimum singular value of A. The notation A � 0 means that A is symmetric
positive-semidefinite. For a pair of n×n symmetric matrices (A,B) and proper cone
C ⊆ Sn, the notation A �C B means that A − B ∈ C, whereas A �C B means
that A − B belongs to the interior of C. Given an integer r > 1, define Cr as the
cone of n × n symmetric matrices whose r × r principal submatrices are all posi-
tive semidefinite. Similarly, define C∗r as the dual cone of Cr, i.e., the cone of n × n
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symmetric matrices whose every r × r principal submatrix is positive semidefinite
(i.e., its factor-width is bounded by r). Given a matrix A ∈ Rm×n and two sets of
positive integers S1 and S2, define A{S1,S2} as the submatrix of A obtained by
removing all rows of A whose indices do not belong to S1, and all columns of A
whose indices do not belong to S2. Moreover, define A{S1} as the submatrix of A
obtained by removing all rows ofA that do not belong to S1. Given a vector a ∈ Rn
and a set F ⊆ Rn, define dF (a) as the minimum distance between a and members
of F . Given a pair of integers (n, r), the binomial coefficient “n choose r” is denoted
by Cnr . The notations ∇xf(a) and ∇2

xf(a), respectively, represent the gradient and
Hessian of the function f , with respect to the vector x, at a point a.

1.3 Outline

The remainder of the paper is organized as follows. In Section 2, we review the stan-
dard SDP relaxation for QCQP. Section 3 presents the main results of the paper: the
penalized SDP, its theoretical analysis on producing a feasible solution along with
a generalized linear independence constraint qualification, and finally the sequential
penalization procedure. In Section 4 we present numerical experiments to test the ef-
fectiveness of the sequential penalization approach for non-convex QCQPs from the
library of quadratic programming instances (QPLIB) as well as large-scale system
identification problems. Finally, we conclude in section 5 with a few final remarks.

2 Preliminaries

In this section, we review the lifting and reformulation-linearization as well as the
standard convex relaxations of QCQP that are necessary for the development of
the main results on penalized SDP in Section 3. Consider a general quadratically-
constrained quadratic program (QCQP):

minimize
x∈Rn

q0(x) (1a)

s.t. qk(x) ≤ 0, k ∈ I (1b)
qk(x) = 0, k ∈ E , (1c)

where I and E index the sets of inequality and equality constraints, respectively.
For every k ∈ {0} ∪ I ∪ E , qk : Rn → R is a quadratic function of the form
qk(x) , x>Akx + 2b>k x + ck, where Ak ∈ Sn, bk ∈ Rn, and ck ∈ R. Denote F
as the feasible set of the QCQP (1a)–(1c). To derive the optimality conditions for a
given point, it is useful to define the Jacobian matrix of the constraint functions.

Definition 1 (Jacobian Matrix) For every x̂ ∈ Rn, the Jacobian matrix J (x̂) for
the constraint functions {qk}k∈I∪E is

J (x̂) , [∇xq1(x̂), . . . ,∇xq|I∪E|(x̂)]>. (2a)

For every Q ⊆ I ∪ E , define JQ(x̂) as the submatrix of J (x̂) resulting from the
rows that belong to Q.
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Given a feasible point for the QCQP (1a)–(1c), the well-known linear indepen-
dence constraint qualification (LICQ) condition can be used as a regularity criterion.

Definition 2 (LICQ Condition) A feasible point x̂ ∈ F is LICQ regular if the rows
of JB̂(x̂) are linearly independent, where B̂ , {k ∈ I ∪ E | qk(x̂) = 0} denotes the
set of binding constraints at x̂.

Finding a feasible point for the QCQP (1a)–(1c), however, is NP-hard as the
Boolean Satisfiability Problem (SAT) is a special case. Therefore, in Section 3, we
introduce the notion of generalized LICQ as a regularity condition for both feasible
and infeasible points.

SDP relaxation

A common approach for tackling the non-convex QCQP (1a)–(1c) is to introduce
an auxiliary variable X ∈ Sn to represent xx>. Then, the objective function (1a)
and constraints (1b)–(1c) can be written as linear functions of x and X . For every
k ∈ {0} ∪ I ∪ E , define q̄k : Rn × Sn → R as

q̄k(x,X) , 〈Ak,X〉+ 2b>k x+ ck. (3)

Consider the following relaxation of QCQP (1a)–(1c):

minimize
x∈Rn,X∈Sn

q̄0(x,X) (4a)

s.t. q̄k(x,X) ≤ 0, k ∈ I (4b)
q̄k(x,X) = 0, k ∈ E (4c)

X − xx> �Cr 0 (4d)

where the additional conic constraint (4d) is a convex relaxation of the equationX =
xx> and

Cr,
{
Y
∣∣ Y {K,K}�0, ∀ K⊆{1, . . . , n}∧|K|=r

}
. (5)

We refer to the convex problem (4a)–(4d) as the r × r SDP relaxation of the QCQP
(1a)–(1c). The choice r = n yields the well-known semidefinite programming (SDP)
relaxation. Additionally, in the homogeneous case (i.e., if b0 = b1 = · · · = b|I∪E| =
0), the case r = 2 leads to the second-order conic programming (SOCP) relaxation.

In the presence of affine constraints, the reformulation-linearization technique
(RLT) of Sherali and Adams [57] can be used to produce additional inequalities with
respect to x andX to strengthen convex relaxations (Appendix B).

If the relaxed problem (4a)–(4d) has an optimal solution (
∗
x,

∗
X) that satisfies

∗
X =

∗
x
∗
x>, then the relaxation is said to be exact and ∗x is a globally optimal solution

for the QCQP (1a)–(1c). The next section offers a penalization method for addressing
the case where relaxations are not exact.
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3 Penalized SDP

If the relaxed problem (4a)–(4d) is not exact, the resulting solution is not necessarily
feasible for the original QCQP (1a)–(1c). In this case, we use an initial point x̂ ∈ Rn
(either feasible or infeasible) to revise the objective function, resulting in a penalized
SDP of the form:

minimize
x∈Rn,X∈Sn

q̄0(x,X) + η(tr{X} − 2x̂>x+ x̂>x̂) (6a)

s.t. q̄k(x,X) ≤ 0, k ∈ I (6b)
q̄k(x,X) = 0, k ∈ E (6c)

X − xx> �Cr 0 (6d)

where η > 0 is a fixed penalty parameter. Note that the penalty term tr{X}−2x̂>x+
x̂>x̂ is nonnegative and equals zero if and only ifX = x̂x̂>. The penalization is tight
if problem (6a)–(6d) has a unique optimal solution (

∗
x,

∗
X) that satisfies

∗
X =

∗
x
∗
x>.

In the next section, we give conditions under which penalized SDP is tight.

3.1 Theoretical analysis

The following theorem guarantees that if x̂ is feasible and satisfies the LICQ regular-
ity condition (in Section 2), then the solution of (6a)–(6d) is guaranteed to be feasible
for the QCQP (1a)–(1c) for an appropriate choice of η.

Theorem 1 Let x̂ be a feasible point for the QCQP (1a)–(1b) that satisfies the LICQ
condition. For sufficiently large η > 0, the SDP (6a)–(6d) has a unique optimal
solution (

∗
x,

∗
X) such that

∗
X =

∗
x
∗
x>. Moreover, ∗x is feasible for (1a)–(1c) and

satisfies q0(
∗
x) ≤ q0(x̂).

If x̂ is not feasible, but satisfies a generalized LICQ regularity condition, intro-
duced below, and is close enough to the feasible set F , then the penalization is still
tight for large enough η > 0. This result is described formally in Theorem 2. First,
we define a distance measure from an arbitrary point in Rn to the feasible set of the
problem.

Definition 3 (Distance Function) The distance function dF : Rn → R is defined as

dF (x̂) , min{‖x− x̂‖2 |x ∈ F}· (7)

Definition 4 (Generalized LICQ Condition) For every x̂ ∈ Rn, the set of quasi-
binding constraints is defined as

B̂ , E ∪
{
k∈I

∣∣∣∣qk(x̂)+‖∇qk(x̂)‖2dF (x̂)+
‖∇2qk(x̂)‖2

2
dF (x̂)2 ≥ 0

}
· (8)
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The point x̂ is said to satisfy the GLICQ condition if the rows of JB̂(x̂) are linearly
independent. Moreover, the singularity function s : Rn → R is defined as

s(x̂),

{
σmin(JB̂(x̂)) if x̂ satisfies GLICQ
0 otherwise, (9)

where σmin(JB̂(x̂)) denotes the smallest singular value of JB̂(x̂).

Observe that if x̂ is feasible, then dF (x̂) = 0, and GLICQ condition reduces to the
LICQ condition. Moreover, GLICQ is satisfied if and only if s(x̂) > 0.

The next definition introduces the notion of matrix pencil corresponding to the
QCQP (1a)–(1c), which will be used as a sensitivity measure.

Definition 5 (Pencil Norm) For the QCQP (1a)–(1c), define the corresponding ma-
trix pencil P : R|I| × R|E| → Sn as follows:

P (γ,µ) ,
∑

k∈I
γkAk +

∑

k∈E
µkAk. (10)

Moreover, define the pencil norm ‖P ‖2 as

‖P ‖2 , max
{
‖P (γ,µ)‖2

∣∣ ‖γ‖22 + ‖µ‖22 = 1
}
, (11)

which is upperbounded by
√∑

k∈I∪E ‖Ak‖22 .

Theorem 2 Let x̂ ∈ Rn satisfy the GLICQ condition for the QCQP (1a)–(1b), and
assume that

dF (x̂) <
s(x̂)

2 (1 + Cn−1,r−1) ‖P ‖2
, (12)

where Cn−1,r−1 is the binomial coefficient “n − 1 choose r − 1” and the distance
function dF (·), sensitivity function s(·) and pencil norm ‖P ‖2 are given by Defini-
tions 3, 4 and 5, respectively. If η is sufficiently large, then the convex problem (6a)–
(6d) has a unique optimal solution (

∗
x,

∗
X) such that

∗
X =

∗
x
∗
x> and ∗x is feasible for

(1a)–(1c).

The motivation behind Theorem 2 is to show that an infeasible initial point can be
used to produce feasible points. In general, it is computationally hard to calculate the
exact distance to F and to verify GLICQ as a consequence. However, local search
methods can be used in practice to find a local solution for (7), resulting in upper
bounds on the distance to F . In Section 4, we use this simple technique to verify
condition (12) for benchmark cases used in our computational study.

The rest of this section is devoted to proving Theorems 1 and 2. To this end, it is
convenient to consider the following optimization problem:

minimize
x∈Rn

q0(x) + η‖x− x̂‖22 (13a)

s.t. qk(x) ≤ 0, k ∈ I (13b)
qk(x) = 0, k ∈ E . (13c)
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Observe that the problem (6a) – (6d) is a convex relaxation of (13a) – (13c) and this
is the motivation behind its introduction.

Consider α > 0 for which the inequality

|q0(x)| ≤ α‖x− x̂‖22 + α, (14)

is satisfied for every x ∈ Rn. If η > α, then the objective function (13a) is lower
bounded by −α and its optimal value is attainable within any closed and nonempty
subset of Rn.

To prove the existence of α, assume that

α ≥ σmax

([
A0 b0
b>0 −x̂>A0x̂− 2b>0 x̂

])
σ−1min

([
In −x̂
−x̂> 1

2 +x̂>x̂

])
(15a)

α ≥ 2|x̂>A0x̂+ 2b>0 x̂+ c0|. (15b)

Then, we have

|q0(x)| =
∣∣∣
[
x> 1

][A0 b0
b>0 −x̂>A0x̂− 2b>0 x̂

][
x
1

]
+ x̂>A0x̂+ 2b>0 x̂+ c0

∣∣∣ (16a)

≤ α
[
x> 1

][ In −x̂
−x̂> 1

2 +x̂>x̂

][
x
1

]
+
α

2
(16b)

= α‖x− x̂‖22 + α (16c)

which concludes (14).
The next lemma shows that by increasing the penalty term η, the optimal solution

∗
x can get as close to the initial point x̂ as dF (x̂). This lemma will later be used to
show that ∗x can inherit the LICQ property from x̂.

Lemma 1 Given an arbitrary x̂ ∈ Rn and ε > 0, for sufficiently large η > 0, every
optimal solution ∗x of the problem (13a)–(13c) satisfies

0 ≤ ‖ ∗x− x̂‖2 − dF (x̂) ≤ ε. (17)

Proof Consider an optimal solution ∗
x. Due to Definition 3, the distance between x̂

and every member of F is not less than dF (x̂), which concludes the left side of (17).
Let xd be an arbitrary member of the set {x ∈ F | ‖x− x̂‖2 = dF (x̂)}. Due to the
optimality of ∗x, we have

q0(
∗
x) + η‖ ∗x− x̂‖22 ≤ q0(xd) + η‖xd − x̂‖22. (18)

According to the inequalities (18) and (14), one can write

(η − α)‖ ∗x− x̂‖22 − α ≤ (η + α)‖xd − x̂‖22 + α (19a)

⇒ ‖ ∗x− x̂‖22 ≤ ‖xd − x̂‖22 +
2α

η − α (1 + ‖xd − x̂‖22) (19b)

⇒ ‖ ∗x− x̂‖22 ≤ dF (x̂)2 +
2α

η − α (1 + dF (x̂)2), (19c)

which concludes the right side of (17), provided that η ≥ α+ 2α(1 + dF (x̂)2)[ε2 +
2εdF (x̂)]−1.
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Lemma 2 Assume that x̂ ∈ Rn satisfies the GLICQ condition for the problem (13a)–
(13c). Given an arbitrary ε > 0, for sufficiently large η > 0, every optimal solution
∗
x of the problem satisfies

s(x̂)− s( ∗x) ≤ 2dF (x̂)‖P ‖2 + ε. (20)

Proof Let B̂ and
∗
B denote the sets of quasi-binding constraints for x̂ and binding

constraints for ∗x, respectively (based on Definition 4). Due to Lemma 1, for every
k ∈ I \ B̂ and every arbitrary ε1 > 0, we have

qk(
∗
x)−qk(x̂)= 2(Akx̂+bk)>(

∗
x− x̂)+(

∗
x− x̂)>Ak(

∗
x− x̂)

≤ ‖∇qk(x̂)‖2‖ ∗x− x̂‖2 + ‖Ak‖2‖ ∗x− x̂‖22
≤ ‖∇qk(x̂)‖2dF (x̂) + ‖Ak‖2dF (x̂)2 + ε1<−qk(x̂), (21)

if η is sufficiently large, which yields
∗
B ⊆ B̂. Let ν ∈ R|B̂| be the left singular vector

of JB̂(
∗
x), corresponding to the smallest singular value. Hence

s(
∗
x) = σmin{J ∗B(

∗
x)} ≥ σmin{JB̂(

∗
x)}=‖JB̂(

∗
x)>ν‖2 (22a)

≥ ‖JB̂(x̂)>ν‖2 − ‖[JB̂(x̂)− JB̂(
∗
x)]>ν‖2 (22b)

≥ σmin{JB̂(x̂)}‖ν‖2 − 2‖P ‖2‖x̂− ∗
x‖2‖ν‖2 (22c)

≥ s(x̂)− 2‖P ‖2‖x̂− ∗
x‖2 (22d)

≥ s(x̂)− 2dF (x̂)‖P ‖2 − ε, (22e)

if η is large, which concludes the inequality (20).

In light of Lemma 2, if x̂ is GLICQ regular and relatively close to F , then ∗
x is

LICQ regular as well. This is used next to prove the existence of Lagrange multipliers.

Lemma 3 Let ∗x be an optimal solution of the problem (13a)–(13c), and assume that
∗
x is LICQ regular. There exists a pair of dual vectors (

∗
γ,
∗
µ) ∈ R|I|+ × R|E| that

satisfies the following Karush-Kuhn-Tucker (KKT) conditions:

2(ηI+A0)(
∗
x−x̂)+2(A0x̂+ b0)+J (

∗
x)>[

∗
γ>,

∗
µ>]>= 0, (23a)

∗
γkqk(

∗
x) = 0, ∀k ∈ I. (23b)

Proof Due to the LICQ condition, there exists a pair of dual vectors (
∗
γ,
∗
µ) ∈ R|I|+ ×

R|E|, which satisfies the KKT stationarity and complementary slackness conditions.
Due to stationarity, we have

0 = ∇x L(
∗
x,
∗
γ,
∗
µ)/2

= η(
∗
x− x̂)+(A0

∗
x+b0)+P (

∗
γ,
∗
µ)
∗
x+

∑

k∈I

∗
γkbk+

∑

k∈E

∗
µkbk

= (ηI+A0)(
∗
x−x̂)+(A0x̂+b0)+J (

∗
x)>[

∗
γ>,

∗
µ>]>/2. (24)

Moreover, (23b) is concluded from the complementary slackness.
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The next lemma bounds the Lagrange multipliers whose existence is proven pre-
viously. This bound is helpful to prove that

∗
X =

∗
x
∗
x>.

Lemma 4 Consider an arbitrary ε > 0 and suppose x̂ ∈ Rn satisfies the inequality

s(x̂) > 2dF (x̂)‖P ‖2. (25)

If η is sufficiently large, for every optimal solution ∗x of the problem (13a)–(13c), there
exists a pair of dual vectors (

∗
γ,
∗
µ) ∈ R|I|+ × R|E| that satisfies the inequality

1

η

√
‖ ∗γ‖22 + ‖ ∗µ‖22 ≤

2dF (x̂)

s(x̂)− 2dF (x̂)‖P ‖2
+ ε (26)

as well as the equations (23a) and (23b).

Proof Due to Lemma 3, there exists (
∗
γ,
∗
µ) ∈ R|I|+ ×R|E| that satisfies the equations

(23a) and (23b). Let τ , [
∗
γ>,

∗
µ>]> and let

∗
B be the set of binding constraints for

∗
x. Due to equations (23a) and (23b), one can write

2(ηI +A0)(
∗
x− x̂) + 2(A0x̂+ b0) + J ∗B(

∗
x)>τ{

∗
B} = 0. (27)

Let φ , s(x̂)− 2dF (x̂)‖P ‖2 and define

ε1 , φ× ε− 2η−1φ−1(‖A0x̂+b0‖2 + dF (x̂)‖A0‖2)

ε+ 2 + 2η−1‖A0‖2 + 2φ−1dF (x̂)
· (28)

If η is sufficiently large, ε1 is positive and based on Lemmas 1 and 2, we have

‖τ‖2
η

=
‖τ{

∗
B}‖2
η

≤ 2‖(ηI +A0)(
∗
x− x̂) + (A0x̂+ b0)‖2

ησmin{J ∗B(
∗
x)}

≤ 2η‖ ∗x− x̂‖2 + 2‖A0‖2‖ ∗x− x̂‖2 + 2‖A0x̂+ b0‖2
ηs(

∗
x)

≤ 2(dF (x̂)+ε1)+2η−1[‖A0‖2(dF (x̂)+ε1)+‖A0x̂+b0‖2]

s(x̂)− 2dF (x̂)‖P ‖2 − ε1
=

2dF (x̂)

s(x̂)− 2dF (x̂)‖P ‖2
+ ε, (29)

where the last equality is a result of the equation (28).

The next two lemmas provide sufficient conditions for
∗
X =

∗
x
∗
x> with respect to

the Lagrange multipliers that will be used later to prove Theorems 1 and 2.

Lemma 5 Consider an optimal solution ∗x of the problem (13a)–(13c), and a pair of
dual vectors (

∗
γ,
∗
µ) ∈ R|I|+ ×R|E| that satisfies the conditions (23a) and (23b). If the

matrix inequality

ηI +A0 + P (
∗
γ,
∗
µ) �Dr 0, (30)

holds true, then the pair (
∗
x,
∗
x
∗
x>) is the unique primal solution to the penalized SDP

(6a)–(6d).
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Proof Let Λ ∈ S+n denotes the dual variable associated with the conic constraint
(6d). Then, the KKT conditions for the problem (6a)-(6d) can be written as follows:

∇x L̄(x,X,γ,µ,Λ) = 2

(
Λx− ηx̂+ b0 +

∑

k∈I

∗
γkbk+

∑

k∈E

∗
µkbk

)
= 0, (31a)

∇X L̄(x,X,γ,µ,Λ) = ηI +A0 + P (γ,µ)−Λ = 0, (31b)
γkqk(x) = 0, ∀k ∈ I (31c)

〈Λ, xx>−X〉 = 0, (31d)

where L̄ : Rn × Sn × R|I| × R|E| × Sn → R is the Lagrangian function, equa-
tions (31a) and (31b) account for stationarity with respect to x and X , respectively,
and equations (31c) and (31d) are the complementary slackness conditions for the
constraints (6b) and (6d), respectively. Define

∗
Λ , ηI +A0 + P (

∗
γ,
∗
µ). (32)

Due to Lemma (3), if η is sufficiently large, ∗x and (
∗
γ,
∗
µ) satisfy the equations (23a)

and (23b), which yield the optimality conditions (31a)-(31d), if x =
∗
x, X =

∗
x
∗
x>,

γ =
∗
γ, µ =

∗
µ, and Λ =

∗
Λ. Therefore, the pair (

∗
x,
∗
x
∗
x>) is a primal optimal points

for the penalized SDP (6a)-(6d).
Since the KKT conditions hold for every pair of primal and dual solutions, we

have

∗
x =

∗
Λ−1

(
ηx̂− b0 −

∑

k∈I

∗
γkbk−

∑

k∈E

∗
µkbk

)
(33)

and
∗
X =

∗
x
∗
x>, according to the equations (31a) and (31d), respectively, which im-

plies the uniqueness of the solution.

Lemma 6 Consider an optimal solution ∗x of the problem (13a)-(13c), and a pair of
dual vectors (

∗
γ,
∗
µ) ∈ R|I|+ ×R|E| that satisfies the conditions (23a) and (23b). If the

inequality,

1

η

√
‖ ∗γ‖22 + ‖ ∗µ‖22 <

1

Cn−1,r−1‖P ‖2
− ‖A0‖2
η‖P ‖2

(34)

holds true, then the pair (
∗
x,
∗
x
∗
x>) is the unique primal solution to the penalized SDP

(6a)–(6d).

Proof Based on Lemma 5, it suffices to prove the conic inequality (30). Define

K , A0 + P (
∗
γ,
∗
µ). (35)

It follows that

‖K‖2 ≤ ‖A0‖2 +
∑

k∈I

∗
γk‖Ak‖2 +

∑

k∈E

∗
µk‖Ak‖2, (36a)

≤ ‖A0‖2 + ‖P ‖2
√
‖ ∗γ‖22 + ‖ ∗µ‖22 . (36b)
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LetR be the set of all r-member subsets of {1, 2, . . . , n}. Hence,

ηI +K =
∑

K∈R
I{K}>RK I{K}, (37)

where

RK =

(
n− 1

r − 1

)−1
[ηI{K,K}+K{K,K}]. (38)

Due to the inequalities (34) and (36), we have RK � 0 for every K ∈ R, which
proves that ηI +K �Dr 0.

Proof (Theorem 2) Let ∗x be an optimal solution of the problem (13a)–(13c). Ac-
cording to the assumption (12), the inequality (25) holds true, and due to Lemma 4,
if η is sufficiently large, there exists a corresponding pair of dual vectors (

∗
γ,
∗
µ) that

satisfies the inequality (26). Now, according to the inequality (12), we have

2dF (x̂)

s(x̂)− 2dF (x̂)‖P ‖2
≤ 1

Cn−1,r−1‖P ‖2
(39)

and therefore (26) concludes (34). Hence, according to Lemma 6, the pair (
∗
x,
∗
x
∗
x>)

is the unique primal solution to the penalized SDP (6a)–(6d).

Proof (Theorem 1) If x̂ is feasible, then dF (x̂) = 0. Therefore, the tightness of the
penalization for Theorem 1 is a direct consequence of Theorem 2. Denote the unique
optimal solution of the penalized SDP as (

∗
x,
∗
x
∗
x>). Then it is straightforward to

verify the inequality q0(
∗
x) ≤ q0(x̂) by evaluating the objective function (6a) at the

point (x̂, x̂x̂>).

3.2 Sequential penalization procedure

In practice, the penalized SDP (6a)–(6d) can be initialized by a point that may not sat-
isfy the conditions of Theorem 1 or Theorem 2 as these conditions are only sufficient,
but not necessary. If the chosen initial point x̂ does not result in a tight penalization,
the penalized SDP(6a)–(6d) can be solved sequentially by updating the initial point
until a feasible and near-optimal point is obtained. This heuristic procedure is de-
scribed in Algorithm 1.

Algorithm 1 Sequential Penalized SDP.

initiate {qk}k∈{0}∪I∪E , r ≥ 2, x̂ ∈ Rn, and the fixed parameter η > 0
while stopping criterion is not met do

solve the problem (6a)–(6d) with the initial point x̂ to obtain (
∗
x,

∗
X)

set x̂← ∗
x

end while
return ∗

x
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According to Theorem (2), once x̂ is close enough to the feasible set F , the pe-
nalization becomes tight, i.e., a feasible solution ∗x is recovered as the unique optima
solution to (6a)–(6d). Afterwards, in the subsequent iterations, according to Theorem
(1), feasibility is preserved and the objective value does not increase.

The following example illustrates Algorithm 1 for polynomial optimization.

Example 1 Consider the following three-dimensional polynomial optimization:

minimize
a,b,c∈R

a (40a)

s.t. a5 − b4 − c4 + 2a3 + 2a2b− 2ab2 + 6abc− 2 = 0 (40b)

To derive a QCQP reformulation of the problem (40a)–(40b), we consider a variable
x ∈ R8, whose elements account for the monomials a, b, c, a2, b2, c2, ab, and a3,
respectively. This leads to the following QCQP:

minimize
x∈R8

x1 (41a)

s.t. x4x8 − x25 − x26 + 2x1x4 + 2x2x4 − 2x1x5 + 6x3x7 − 2 = 0, (41b)

x4 − x21 = 0, x5 − x22 = 0, x6 − x33 = 0, (41c)
x7 − x1x2 = 0, x8 − x1x4 = 0. (41d)

The transformation of the polynomial optimization to QCQP is standard and it
is described in Appendix A for completeness. The global optimal objective value
of the above QCQP equals −2.0198 and the lower-bound, offered by the standard
SDP relaxation equals −89.8901. In order to solve the above QCQP, we run Al-
gorithm 1, equipped with the SDP relaxation (no additional valid inequalities) and
penalty term η = 0.025. The trajectory with three different initializations x̂1 =
[0, 0, 0, 0, 0, 0, 0]>, x̂2 = [−3, 0, 2, 9, 0, 4, 0, 27]>, and x̂3 = [0, 4, 0, 0, 16, 0, 0, 0]>

are given in Table 1 and shown in Fig. 1. In all three cases, the algorithm achieves
feasibility in 1–8 iterations. Moreover, a feasible solution with less than 0.2% gap
from global optimality is attained within 10 iterations in all three cases. The example
illustrates that Algorithm 1 is not sensitive to the choice of initial point.

Table 1: Trajectory of Algorithm 1 for three different initializations.

Iteration x̂1 x̂2 x̂3

a (obj.) b c tr{
∗
X − ∗

x
∗
x>} a (obj.) b c tr{

∗
X − ∗

x
∗
x>} a (obj.) b c tr{

∗
X − ∗

x
∗
x>}

0 0.0000 0.0000 0.0000 - -3.0000 0.0000 2.0000 - 0.0000 4.0000 0.0000 -
1 -1.2739 0.6601 -0.4697 2.1884 -2.5377 1.2831 -0.7380 138.9796 -1.5721 2.6848 -0.9492 39.2455
2 -1.5173 1.1445 -1.0128 < 10−11 -2.4389 2.0715 -1.3946 51.1170 -1.5749 2.7588 -1.3854 13.5140
3 -1.6882 1.3773 -1.2015 < 10−11 -2.2889 2.2685 -1.7098 23.0050 -1.6678 2.6583 -1.5228 0.9995
4 -1.8021 1.5739 -1.3561 < 10−11 -2.1878 2.3416 -1.8442 11.4963 -1.8322 2.6083 -1.5587 < 10−11

5 -1.8824 1.7447 -1.4873 < 10−11 -2.1194 2.3621 -1.9007 5.9206 -1.9460 2.5261 -1.6624 < 10−11

6 -1.9386 1.8930 -1.5992 < 10−11 -2.0733 2.3611 -1.9250 2.9082 -2.0002 2.4391 -1.7847 < 10−11

7 -1.9760 2.0180 -1.6923 < 10−11 -2.0423 2.3526 -1.9352 1.1594 -2.0156 2.3824 -1.8598 < 10−11

8 -1.9985 2.1175 -1.7656 < 10−11 -2.0214 2.3426 -1.9393 0.0938 -2.0189 2.3532 -1.8938 < 10−11

9 -2.0104 2.1907 -1.8193 < 10−11 -2.0197 2.3352 -1.9302 < 10−11 -2.0196 2.3387 -1.9079 < 10−11

10 -2.0160 2.2408 -1.8559 < 10−11 -2.0198 2.3304 -1.9240 < 10−11 -2.0197 2.3313 -1.9135 < 10−11
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Fig. 1: Trajectory of Algorithm 1 for three different initializations. The yellow surface represents the
feasible set and the blue, red and green points correspond to x̂1, x̂2 and x̂3, respectively.

4 Numerical experiments

In this section we describe numerical experiments to test the effectiveness of the se-
quential penalization method for non-convex QCQPs from the library of quadratic
programming instances (QPLIB) [21] as well as large-scale system identification
problems [17].

4.1 QPLIB problems

The experiments are performed on a desktop computer with a 12-core 3.0GHz CPU
and 256GB RAM. MOSEK v8.1 [3] is used through MATLAB 2017a to solve the
resulting SDPs. The size and number of constraints for each QPLIB instance are
reported in Table 2.

Although computing the exact distance to the feasible set is difficult, one can
find an upper bound for dF via simple local search to verify the sufficient condition
of Theorem 2. Using MATLAB’s fmincon solver, we verified that the (infeasible)
SDP relaxation solution for 10 of the 24 instances used in this study satisfied the
sufficient condition of Theorem 2. Hence, for these 10 instances (highligted with
stars in Table 5), Theorem 2 guarantees recovering a feasible solution via penalized
SDP in a single iteration.

For example, consider QPLIB instance 1773 and its SDP relaxation solution
xSDP. Using MATLAB’s fmincon solver, we verify that

dF (xSDP) < 0.0327

which leads to 7 quasi-binding constraints (including lower and upper-bounds) and

s(xSDP) > 3.3712.
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Moreover, we have ‖P‖ = 1.7626, which implies that (12) is satisfied by xSDP.

4.1.1 Sequential penalization

Tables 3–6 report results with Algorithm 1 for 2× 2 SDP, 2× 2 SDP+RLT, SDP, and
SDP+RLT relaxations, respectively. The following valid inequalities are imposed on
all of the convex relaxations:

Xkk − (xlbk + xubk )xk + xlbk x
ub
k ≤ 0, ∀k ∈ {1, . . . , n} (42a)

Xkk − (xubk + xubk )xk + xubk x
ub
k ≥ 0, ∀k ∈ {1, . . . , n} (42b)

Xkk − (xlbk + xlbk )xk + xlbk x
lb
k ≥ 0, ∀k ∈ {1, . . . , n} (42c)

where l,u ∈ Rn are given lower and upper bounds on x. Problem (4a)–(4d) is solved
with the following four settings:

– 2× 2 SDP relaxation: r = 2 and valid inequalities (42a) – (42c).
– 2× 2 SDP+RLT relaxation: V = H×H and r = 2.
– SDP relaxation: r = n and valid inequalities (42a) – (42c).
– SDP+RLT relaxation: V = H×H and r = n,

where V is defined in Appendix B. Let (
∗
x,

∗
X) denote the optimal solution of the con-

vex relaxation (4a)–(4d). We use the point x̂ =
∗
x as the initial point of the algorithm.

The penalty parameter η is chosen via bisection as the smallest number of the
form α × 10β , which results in a tight penalization during the first six iterations,
where α ∈ {1, 2, 5} and β is an integer. In all of the experiments, the value of η
has remained static throughout Algorithm 1. Denote the sequence of penalized SDP
solutions obtained by Algorithm 1 as

(x(1),X(1)), (x(2),X(2)), (x(3),X(3)), . . .

The smallest i such that

tr{X(i) − x(i)(x(i))>} < 10−7 (43)

is denoted by ifeas, i.e., it is the number of iterations that Algorithm 1 needs to attain
a tight penalization. Moreover, the smallest i such that

q0(x(i−1))− q0(x(i))

|q0(x(i))| ≤ 5× 10−4 (44)

is denoted by istop, and UB , q0(x(istop)). The following formula is used to calculate
the percentage gaps from the optimal costs reported by the QPLIB library:

GAP(%) = 100× qstop0 − qopt0

|qopt0 |
. (45)

Moreover, t(s) denotes the cumulative solver time in seconds for istop iterations. Our
results are compared with the global solvers Baron [59] and Couenne [8] by setting
the maximum solver time equal to the time spent by Algorithm 1. We ran Baron and
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Table 2: QPLIB benchmark problems.

Inst Total Quad Total Inst Total Quad Total Inst Total Quad Total Inst Total Quad Total
Var Cons Cons Var Cons Cons Var Cons Cons Var Cons Cons

0343 50 0 1 1353 50 1 6 1535 60 60 66 1773 60 1 7
0911 50 50 50 1423 40 20 24 1619 50 25 30 1886 50 50 50
0975 50 10 10 1437 50 1 11 1661 60 1 13 1913 48 48 48
1055 40 20 20 1451 60 60 66 1675 60 1 13 1922 30 60 60
1143 40 20 24 1493 40 1 5 1703 60 30 36 1931 40 40 40
1157 40 1 9 1507 30 30 33 1745 50 50 55 1967 50 75 75

Table 3: Sequential penalized 2× 2 SDP.

Inst Sequential penalized 2× 2 SDP BARON COUENNE
η ifeas istop t(s) UB GAP(%) LB UB GAP(%) LB UB GAP(%)

0343† 5e+2 1 100 75.27 -5.882 7.89 -95.372 -6.386 0.00 -7668.005 -6.386 0.00
0911 1e+1 1 29 22.91 -30.675 4.58 -172.777 0.000 100 -172.777 -31.026 3.49
0975 5e+0 6 18 46.36 -36.434 3.75 -47.428 -37.801 0.14 -171.113 -37.213 1.69
1055 1e+1 1 22 14.39 -32.620 1.26 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143 2e+1 1 44 25.68 -55.417 3.20 -69.522 -57.247 0.00 -384.45 -56.237 1.76
1157 2e+0 2 9 9.01 -10.938 0.10 -11.414 -10.948 0.00 -80.51 -10.948 0.00
1353 5e+0 1 48 84.90 -7.700 0.19 -7.925 -7.714 0.00 -73.28 -7.714 0.00
1423 5e+0 1 29 17.44 -14.684 1.90 -16.313 -14.968 0.00 -76.13 -14.871 0.65
1437 5e+0 1 36 54.57 -7.785 0.06 -9.601 -7.789 0.00 -87.58 -7.789 0.00
1451 2e+1 4 21 20.86 -85.598 2.26 -135.140 -87.577 0.00 -468.04 -86.860 0.82
1493 2e+1 1 18 14.49 -41.910 2.90 -47.239 -43.160 0.00 -395.69 -43.160 0.00
1507 2e+0 1 15 8.98 -8.289 0.15 -49.709 -8.301 0.00 -44.37 -8.301 0.00
1535 5e+0 1 26 28.16 -10.948 5.51 -13.407 -11.397 1.63 -107.86 -11.398 1.63
1619 5e+0 1 39 32.34 -9.210 0.08 -10.302 -9.217 0.00 -74.55 -9.217 0.00
1661 5e+0 1 32 87.50 -15.666 1.81 -19.667 -15.955 0.00 -139.25 -15.955 0.00
1675 2e+1 1 21 36.38 -75.485 0.24 -96.864 -75.669 0.00 -435.48 -75.669 0.00
1703 5e+1 2 30 31.82 -130.902 1.43 -180.935 -132.802 0.00 -929.92 -132.802 0.00
1745 2e+1 1 26 22.15 -71.704 0.93 -77.465 -72.377 0.00 -317.99 -72.377 0.00
1773 5e+0 1 56 148.79 -14.154 3.34 -21.581 -14.642 0.00 -118.65 -14.642 0.00
1886 2e+1 1 34 26.82 -78.604 0.09 -135.615 -78.672 0.00 -324.87 -78.672 0.00
1913 1e+1 1 28 21.91 -51.889 0.42 -68.555 -52.109 0.00 -164.26 -51.478 1.21
1922 1e+1 1 23 11.16 -35.437 1.43 -121.872 -35.951 0.00 -123.2 -35.951 0.00
1931 1e+1 1 13 8.78 -53.684 3.64 -85.196 -55.709 0.00 -204.08 -54.290 2.55
1967 5e+1 1 32 27.23 -105.570 1.87 -136.098 0.000 100 -622.57 -107.581 0.00
Avg 33.9 1.4 31.2 36.68 2.04 8.41 0.58
Max 500 6 100 148.79 7.89 100 3.34

Couenne through GAMS v25.1.2 [22]. The resulting lower bounds, upper bounds and
percentage GAPs are reported in Tables 3–6.

We observe in Tables 3–6 that penalized 2 × 2 SDP, 2 × 2 SDP+RLT, SDP, and
SDP+RLT have all successfully recover feasible points with an average of at most
2.07% optimality gap at termination. Penalized SDP, and SDP+RLT consistently
achieve less than 3% optimality gap for all cases. Sequential SDP requires fewer
of iterations compared to sequential 2 × 2 SDP to meet the stopping criterion (44)
and results in overall faster solution times even though each iteration takes longer.
For all formulations, a feasible point is obtained on average in about two iterations
of Algorithm 1. With penalized 2 × 2 SDP (+RLT), at termination, the average op-
timality gap is lower than with Baron, but higher than with Couenne. On the other
hand, with the stronger penalized SDP (+RLT) approach the average as well as the
maximum optimality gap is somewhat lower than with both Baron and Couenne at
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Table 4: Sequential penalized 2× 2 SDP+RLT.

Inst Sequential 2× 2 SDP+RLT BARON COUENNE
η ifeas istop t(s) UB GAP(%) LB UB GAP(%) LB UB GAP(%)

0343 1e+2 4 24 25.23 -5.945 6.91 -95.372 -6.386 0.00 -7668.005 -6.386 0.00
0911 1e+1 1 33 27.69 -30.923 3.81 -172.777 -32.148 0.00 -172.777 -31.026 3.49
0975 5e+0 6 15 4.10 -36.300 13.17 -47.428 -37.794 0.16 -171.113 -36.812 2.75
1055 1e+1 1 24 16.78 -32.666 1.12 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143 2e+1 1 30 32.66 -55.507 3.04 -69.522 -57.247 0.00 -384.45 -56.237 1.76
1157 2e+0 1 0 1.14 -10.948 0.00 -11.414 -10.948 0.00 -80.51 -10.948 0.00
1353 1e+0 3 11 19.41 -7.711 0.05 -7.925 -7.714 0.00 -73.28 -7.714 0.00
1423 2e+0 3 14 16.41 -14.730 1.59 -16.313 -14.968 0.00 -76.13 -14.871 0.65
1437 5e-1 4 8 21.62 -7.788 0.02 -9.601 -7.789 0.00 -87.58 -7.789 0.00
1451 2e+1 2 36 100.50 -87.502 0.09 -135.140 -87.577 0.00 -468.04 -87.283 0.34
1493 1e+1 3 13 13.69 -41.804 3.14 -47.239 -43.160 0.00 -395.69 -43.160 0.00
1507 1e+0 6 13 10.31 -8.295 0.08 -49.709 -8.301 0.00 -44.37 -8.301 0.00
1535 2e+0 3 23 83.47 -11.241 2.98 -13.407 -11.586 0.00 -107.86 -11.398 1.62
1619 2e+0 3 20 35.62 -9.213 0.05 -10.302 -9.217 0.00 -74.55 -9.217 0.00
1661 1e+0 3 8 35.85 -15.666 1.81 -19.667 -15.955 0.00 -139.25 -15.955 0.00
1675 1e+1 3 11 41.30 -75.537 0.17 -96.864 -75.669 0.00 -435.48 -75.669 0.00
1703 2e+1 5 22 62.63 -131.330 1.11 -180.935 -132.802 0.00 -929.92 -132.802 0.00
1745 5e+0 4 19 40.44 -72.351 0.04 -77.465 -72.377 0.00 -317.99 -72.377 0.00
1773 5e+0 1 56 120.65 -14.176 3.19 -21.581 -14.642 0.00 -118.65 -14.642 0.00
1886 2e+1 1 35 28.19 -78.620 0.07 -135.615 -78.672 0.00 -324.87 -78.672 0.00
1913 5e+0 4 18 15.10 -51.879 0.44 -68.555 -52.109 0.00 -164.26 -51.348 1.46
1922 1e+1 1 26 13.22 -35.451 1.39 -121.872 -35.951 0.00 -123.2 -35.951 0.00
1931 1e+1 1 13 8.59 -53.709 3.59 -85.196 -55.709 0.00 -204.08 -54.290 2.55
1967 5e+1 1 38 33.01 -105.616 1.83 -136.098 0.000 100 -622.57 -107.581 0.00
Avg 13.4 2.7 21.3 33.65 2.07 4.17 0.61
Max 100 6 56 120.65 13.17 100 3.49

termination. Overall, the proposed sequential penalization approach is successful in
recovering high quality feasible solutions fast and its performance is comparable with
the nonconvex optimizers Baron and Couenne for this data set.

Figures 2, shows the convergence of Algorithm 1 for instance 1507. The choice
of η for all curves are taken from the corresponding rows of the Tables 3, 4, 5, and 6.

1 2 3 4 7 8 9 105 6 
Iterations (k)
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X
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 SOCP+RLT
 SDP
 SDP+RLT

Fig. 2: Convergence of sequential 2× 2 SDP, 2× 2 SDP+RLT, SDP, and SDP+RLT for inst. 1507.
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Table 5: Sequential penalized SDP.

Inst Sequential SDP BARON COUENNE
η ifeas istop t(s) UB GAP(%) LB UB GAP(%) LB UB GAP(%)

0343∗ 1e+2 1 53 29.24 -6.379 0.12 -95.372 -6.386 0.00 -7668.005 -6.386 0.00
0911 2e+0 1 9 5.19 -31.811 1.05 -172.777 0.000 100 -172.777 -31.026 3.49
0975 2e+0 2 13 8.18 -37.845 0.02 -47.428 -37.794 0.16 -171.113 -36.812 2.75
1055 5e+0 1 8 4.36 -32.528 1.54 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143 5e+0 4 15 7.89 -55.606 2.87 -69.522 -57.247 0.00 -384.45 -53.367 6.78
1157 1e+0 1 5 3.15 -10.945 0.03 -11.414 -10.948 0.00 -80.51 -10.948 0.00
1353∗ 1e+0 1 10 6.12 -7.712 0.03 -7.925 -7.714 0.00 -73.28 -7.714 0.00
1423∗ 1e+0 1 5 3.28 -14.676 1.95 -16.313 -14.968 0.00 -76.13 -14.078 5.94
1437∗ 1e+0 1 7 4.30 -7.787 0.03 -9.601 -7.789 0.00 -87.58 -7.789 0.00
1451† 5e+0 2 6 5.09 -85.972 1.83 -135.140 - - -468.04 - -
1493∗ 5e+0 1 6 4.10 -43.160 0.00 -47.239 -43.160 0.00 -395.69 -43.160 0.00
1507 5e-1 3 6 3.28 -8.291 0.12 -49.709 -8.301 0.00 -44.37 -8.301 0.00
1535 1e+0 1 16 13.05 -11.363 1.93 -13.407 -11.397 1.63 -107.86 -11.398 1.63
1619∗ 1e+0 1 7 4.64 -9.213 0.05 -10.302 -9.217 0.00 -74.55 -9.217 0.00
1661∗ 1e+0 1 12 7.57 -15.955 0.00 -19.667 -15.955 0.00 -139.25 -15.955 0.00
1675∗ 5e+0 1 5 3.75 -75.550 0.16 -96.864 -75.669 0.00 -435.48 -75.669 0.00
1703 1e+1 1 10 6.96 -132.539 0.20 -180.935 -131.466 1.01 -929.92 - -
1745† 5e+0 1 8 4.75 -71.828 0.76 -77.465 -72.377 0.00 -317.99 -72.377 0.00
1773∗ 1e+0 1 8 5.44 -14.633 0.06 -21.581 -14.642 0.00 -118.65 -14.636 0.04
1886 5e+0 2 9 5.84 -78.659 0.02 -135.615 -49.684 36.84 -324.87 -78.672 0.00
1913 5e+0 1 20 12.48 -51.866 0.47 -68.555 -52.109 0.00 -164.26 -51.348 1.46
1922∗ 5e+0 1 7 4.34 -35.452 1.39 -121.872 -35.916 0.10 -123.2 -35.951 0.00
1931 5e+0 1 10 5.87 -54.894 1.46 -85.196 -55.709 0.00 -204.08 -54.290 2.55
1967 1e+1 1 6 5.49 -104.752 2.63 -136.098 0.000 100 -622.57 -107.581 0.00
Avg 7.6 1.3 11.1 6.92 0.76 10.85 1.12
Max 100 4 53 29.24 2.87 100 6.78

† Rows 1751 and 1745 are excluded from average and maximum computations due to missing entries.
∗ ifeas = 1 is guaranteed by Theorem 2.

4.1.2 Choice of the penalty parameter η

In this experiment the sensitivity of different penalization methods to the choice of
the penalty parameter η is tested. To this end, one iteration of the penalized SDP (6a)-
(6d) is solved for a wide range of η values. The benchmark case 1143 is used for this
experiment. If η is small, none of the proposed penalized SDPs are tight for the case
1143. As the value of η increases, the feasibility violation tr{

∗
X − ∗

x
∗
x>} abruptly

vanishes once crossing η = 1.9, η = 7.7, and η = 19.6, for the penalized 2×2 SDP,
SDP and SDP+RLT, respectively. Remarkably, if ∗xSDP+RLT is used as the initial
point and η ' 2, then the penalized SDP+RLT (6a)–(6d) produces a feasible point
for the benchmark case 1143 whose objective value is within 0.2% of the reported
optimal cost q0(xQPLIB).

Additionally, Figure 3 shows the result of one iteration of penalized SDP for a
wide range of η values, on QPLIB instances 1423, 1675, and 1967. As demonstrated
by the figures, the resulting objective values of penalized SDP grow slowly beyond
certain η. This indicates that the proposed approach is not very sensitive to the choice
of η and a wide range of η values can be used for penalization.
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Table 6: Sequential penalized SDP+RLT.

Inst Sequential SDP+RLT BARON COUENNE
η ifeas istop t(s) UB GAP(%) LB UB GAP(%) LB UB GAP(%)

0343 0e+0 0 0 1.42 -6.386 0.00 -95.372 -6.386 0.00 -7668.005 -6.386 0.00
0911 2e-1 4 5 13.08 -32.147 0.00 -172.777 0.000 100 -172.777 -31.026 3.49
0975 2e-1 3 5 12.75 -37.852 0.00 -47.428 -37.794 0.16 -171.113 -36.812 2.75
1055 1e+0 5 8 9.56 -32.874 0.49 -37.841 -33.037 0.00 -199.457 -33.037 0.00
1143 5e-1 4 5 7.27 -57.241 0.01 -69.522 -57.247 0.00 -384.45 -53.367 6.78
1157 0e+0 0 0 0.88 -10.948 0.00 -11.414 -10.948 0.00 -80.51 -10.948 0.00
1353 0e+0 0 0 0.45 -7.714 0.00 -7.925 -7.714 0.00 -73.28 -7.714 0.00
1423 2e-1 1 2 2.82 -14.929 0.25 -16.313 -14.968 0.00 -76.13 -14.078 5.94
1437 1e-2 1 2 7.02 -7.789 0.00 -9.601 -7.789 0.00 -87.58 -7.789 0.00
1451 2e+0 2 5 24.45 -87.573 0.01 -135.140 -87.577 0.00 -468.04 -86.860 0.82
1493 5e-1 1 2 2.76 -43.160 0.00 -47.239 -43.160 0.00 -395.69 -43.160 0.00
1507 0e+0 0 0 0.61 -8.301 0.00 -49.709 -8.301 0.00 -44.37 -8.301 0.00
1535 5e-1 1 10 38.01 -11.536 0.43 -13.407 -11.397 1.63 -107.86 -11.398 1.62
1619 0e+0 0 0 2.38 -9.217 0.00 -10.302 -9.217 0.00 -74.55 -9.217 0.00
1661 1e-1 1 2 12.88 -15.955 0.00 -19.667 -15.955 0.00 -139.25 -15.955 0.00
1675 5e-1 4 0 4.22 -75.669 0.00 -96.864 -75.669 0.00 -435.48 -75.669 0.00
1703 2e+0 1 3 13.50 -72.376 0.00 -77.465 - - -317.99 -72.377 0.00
1773 2e-1 3 4 18.01 -14.626 0.11 -21.581 -14.642 0.00 -118.65 -14.636 0.04
1886 2e+0 2 4 9.05 -78.643 0.04 -135.615 -78.672 0.00 -324.87 -78.672 0.00
1913 1e+0 2 6 11.49 -52.108 0.00 -68.555 -52.109 0.00 -164.26 -51.348 1.46
1922 2e+0 1 5 3.35 -35.556 1.10 -121.872 -35.741 0.58 -123.2 -35.951 0.00
1931 1e+0 1 2 2.99 -55.674 0.06 -85.196 -53.760 3.50 -204.08 -54.290 2.55
1967 5e+0 1 8 16.11 -107.052 0.49 -136.098 0.000 100 -622.57 -107.581 0.00
Avg 0.8 1.7 3.39 9.35 0.14 8.96 1.11
Max 5 5 10 38 1.1 100 6.78

† Row 1745 is excluded from average and maximum computations due to missing entries.

4.2 Large-scale system identification problems

The advantage of the panelized SDP approach becomes clearer for large scale sparse
QCQPs that are beyond the capabilities of the state-of-the-art non-convex solvers.

Following [17], this case study is concerned with the problem of identifying the
parameters of linear dynamical systems given limited observations and non-uniform
snapshots of state vectors. Optimization is an important tool for problems involving
dynamical systems such as the identification of transfer functions and control syn-
thesis [18, 31, 54, 60, 61]. One of these computationally-hard problems is system
identification based solely on data (without intrusive means) which has been widely
studied in the literature of control [52, 55]. In this case study, system identification is
cast as a non-convex QCQP and evaluate the ability of the proposed penalized SDP
in solving very large scale instances of this problem.

Consider a discrete-time linear system described by the system of equations:

z[τ + 1] = Az[τ ] +Bu[τ ] +w[τ ] τ = 1, 2, . . . , T − 1 (46a)

where

– {z[τ ] ∈ Rn}Tτ=1 are the state vectors that are known at times τ ∈ {τ1, . . . , τo},
– {u[τ ] ∈ Rm}Tτ=1 are the known control command vectors.
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Fig. 3: The effect of η on the performance of penalized 2×2 SDP, 2×2 SDP+RLT, SDP, and SDP+RLT
for cases QPLIB 1423, 1675, and 1967.

– A ∈ Rn×n andB ∈ Rn×m are fixed unknown matrices, and
– {w[τ ] ∈ Rn}Tτ=1 account for the unknown disturbance vectors.

Our goal is to estimate the pair of ground truth matrices (Ā, B̄), given a sample
trajectory of the control commands {ū[τ ] ∈ Rn}Tτ=1 and the incomplete state vectors
{z̄[τ ] ∈ Rn}τ∈{τ1,...,τo}. To this end, we employ the minimum least absolute value
estimator which amounts to the following QCQP:

minimize
{y[τ ]∈Rn}T−1

τ=1

{z[τ ]∈Rn}Tτ=1

A∈Rn×n
B∈Rn×m

T−1∑

τ=1

1>n y[τ ] (47a)

subject to y[τ ] ≥ +z[τ + 1]−Az[τ ]−Bū[τ ] τ ∈ {1, 2, . . . , T − 1}, (47b)
y[τ ] ≥ −z[τ + 1] +Az[τ ] +Bū[τ ] τ ∈ {1, 2, . . . , T − 1}, (47c)
z[τ ] = z̄[τ ] τ ∈ {τ1, . . . , τo}. (47d)
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For every τ ∈ {1, 2, . . . , T − 1}, the auxiliary variable y[τ ] ∈ Rn accounts for
|z[τ + 1]−Az[τ ]−Bū[τ ]|. This relation is imposed through the pair of constraints
(47b) and (47c).

The problem (47a)–(47d), can be cast in the form of (1a)–(1c), with respect to the
vector

x , [z[1]>, . . . , z[T ]>, vec{A}>, αy[1]>, . . . , αy[T − 1]>, α vec{B}>], (48)

where α is a preconditioning constant. To solve the resulting problem, we use the
sequential Algorithm 1 equipped with the 2 × 2 SDP relaxation and the initial point
x̂ = 0.

We consider system identification problems with n = 25, m = 20, T = 500
and o = 400. In every experiment, {τ1, . . . , τo} is a uniformly selected subset of
{1, 2, . . . , T}. The resulting QCQP variable x is 23605-dimensional and the problem
is 16100-dimensional if we exclude the known state vectors {z̄[τ ] ∈ Rn}τ∈{τ1,...,τo}.
Due to sparsity of the QCQP (47a)–(47d) each iteration of the penalized 2 × 2 SDP
is solved within 30 minutes, by omitting the elements of the lifted variable X that
do not appear in the objective and constraints. All of the convex programs are solved
using MOSEK v8.1 [3] through MATLAB 2017a and on a desktop computer with a
12-core 3.0GHz CPU and 256GB RAM. Due to the sheer size of the problem, we
were only able to solve instances with T ≤ 70 using Baron and Couenne, neither of
which resulted in successful recovery of the unknown matrices due to limited data
points.

2

1 2 3 4 5 6 7 8 9 10

1.22

1.18

1.14

1.10

1.06

·104

Iterations (k)

∑
T τ
=

1
1
>
y
[τ
]

σ = 0.01

σ = 0.02

σ = 0.05

σ = 0.10

Fig. 4: Convergence of the sequential penalized 2 × 2 SDP for large-scale system identification with
different disturbance levels.

The ground truth values are chosen as follows:

– The elements of Ā ∈ R25×25 have zero-mean Gaussian distribution and the ma-
trix is scaled in such a way that the largest singular value is equal to 0.5.

– Every element of B̄ ∈ R25×20, {ū[τ ] ∈ R20}Tτ=1 and z̄[1] ∈ R25 have standard
normal distribution.

– The elements of {w̄[τ ] ∈ R25}T−1τ=1 have independent zero-mean Gaussian distri-
bution with the standard deviation σ ∈ {0.01, 0.02, 0.05, 0.10}.
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For each experiment, we ran Algorithm 1 for 10 iterations. The preconditioning and
penalty terms are set to α = 10−3 and η = 40, respectively. For each σ ∈ {0.01, 0.02,
0.05, 0.10}, we have run 10 random experiments resulting in the average recovery er-
rors 0.0005, 0.0010, 0.0026, and 0.0062, respectively, for 1

n‖Ā −A
(10)‖F , and the

average errors 0.0014, 0.0028, 0.0070, and 0.0141, respectively, for (mn)−
1
2 ‖B̄ −

B(10)‖F . In all of the trials, a feasible point is obtained in the first iteration of Algo-
rithm 1. Figure 4 illustrates the convergence behavior of the objective functions for
one of the trials for each disturbance level.

5 Conclusions

This paper introduces a penalized SDP approach for recovering feasible and near-
optimal solutions to nonconvex quadratically-constrained quadratic programming
(QCQP) problems. Given an arbitrary initial point (feasible or infeasible) for the orig-
inal QCQP, penalized semidefinite programs are formulated by adding a linear term
to the objective. A generalized linear independence constraint qualification (LICQ)
condition is introduced as a regularity criterion for initial points, and it is shown
that the solution of penalized SDP is feasible for QCQP if the initial point is regu-
lar and close to the feasible set. We show that the proposed penalized SDPs can be
solved sequentially in order to improve the objective of the feasible solution. Numer-
ical experiments on QPLIB benchmark cases demonstrate that the proposed sequen-
tial approach performs comparable to nonconvex optimizers Baron and Couenne.
More importantly, it allows one to solve large scale sparse QCQPs, which are beyond
the capabilities of the state-of-the are solvers, as demonstrated on large-scale system
identification problems.

Acknowledgements The authors are grateful to GAMS Development Corporation for providing them
with unrestricted access to a full set of solvers throughout the project.
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A Application to polynomial optimization

In this section, we show that the proposed penalized SDP approach can be used for polynomial optimiza-
tion as well. A polynomial optimization problem is formulated as

minimize
x∈Rn

u0(x) (49a)

s.t. uk(x) ≤ 0, k ∈ I (49b)

uk(x) = 0, k ∈ E, (49c)

for every k ∈ {0} ∪ I ∪ E , where each function uk : Rn → R is a polynomial of arbitrary degree.
Problem (49a)–(49c) can be reformulated as a QCQP of the form:

minimize
x∈Rn,y∈Ro

w0(x, y) (50a)

s.t. wk(x, y) ≤ 0, k ∈ I (50b)

wk(x, y) = 0, k ∈ E (50c)

vi(x, y) = 0, i ∈ O, (50d)

where y ∈ R|O| is an auxiliary variable, and v1, . . . , v|O| and w0, w1, . . . , w|{0}∪I∪E| are quadratic
functions with the following properties:
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– For every x ∈ Rn, the function v(x, ·) : R|O| → R|O| is invertible,
– If v(x, y) = 0n, then wk(x, y) = uk(x) for every k ∈ {0} ∪ I ∪ E .

Based on the above properties, there is a one-to-one correspondence between the feasible sets of (49a)–
(49c) and (50a)–(50d). Moreover, a feasible point (

∗
x,
∗
y) is an optimal solution to the QCQP (50a)–(50d)

if and only if ∗x is an optimal solution to the polynomial optimization problem (49a)–(49c).

Theorem 3 ([41]) Suppose that {uk}k∈{0}∪I∪E are polynomials of degree at most d, consisting of m
monomials in total. There exists a QCQP reformulation of the polynomial optimization (49a)–(49c) in the
form of (50a)–(50d), where |O| ≤ mn (blog2(d)c+ 1).

The next proposition shows that the LICQ regularity of a point x̂ ∈ Rn is inherited by the corre-
sponding point (x̂, ŷ) ∈ Rn × Ro of the QCQP reformulation (50a)-(50d).

Proposition 1 Consider a pair of vectors x̂ ∈ Rn and ŷ ∈ R|O| satisfying v(x̂, ŷ) = 0n. The following
two statements are equivalent:

1. x̂ is feasible and satisfies the LICQ condition for the polynomial optimization problem (49a)–(49b).
2. (x̂, ŷ) is feasible and satisfies the LICQ condition for the QCQP (50a)–(50d).

Proof From u(x̂) = w(x̂, ŷ) and the invertiblity assumption for v(x̂, ·), we have

∂u(x̂)

∂x
=
[
∂w(x̂,ŷ)

∂x
∂w(x̂,ŷ)

∂y

][
I −

(
∂v(x̂,ŷ)

∂y

)−1 ∂v(x̂,ŷ)
∂x

]>
=
∂w(x̂, ŷ)

∂x
−
∂w(x̂, ŷ)

∂y

(
∂v(x̂, ŷ)

∂y

)−1 ∂v(x̂, ŷ)

∂x
. (51)

Therefore, JPO(x̂) =
∂u(x̂)
∂x

is equal to the Schur complement of

JQCQP(x̂, ŷ) =

[
∂w(x̂,ŷ)

∂x
∂w(x̂,ŷ)

∂y
∂v(x̂,ŷ)

∂x
∂v(x̂,ŷ)

∂y

]
, (52)

which is the Jacobian matrix of the QCQP (50a)–(50d) at the point (x̂, ŷ). As a result, the matrix JPO(x̂)
is singular if and only if JQCQP(x̂, ŷ) is singular.

B Additional strengthening by RLT

This appendix presents the reformulation-linearization technique (RLT) [57] inequalities used to strengthen
convex relaxations (4a)–(4d) in our computations in the presence of affine constraints. Define L as the set
of affine constrains in the QCQP (1a)–(1c), i.e., L , {k ∈ I ∪ E | Ak = 0n×n}. Define also

H , [B{L ∩ I}>, B{L ∩ E}>,−B{L ∩ E}>]>, (53a)

h , [ c{L ∩ I}> , c{L ∩ E}> ,− c{L ∩ E}> ]>, (53b)

whereB , [b1, . . . , b|I∩E|]
> and c , [c1, . . . , c|I∩E|]

>. Every x ∈ F satisfies

Hx+ h ≤ 0, (54)

and, as a result, all elements of the matrix

Hxx>H> + hx>H> +Hxh> + hh> (55)

are nonnegative if x is feasible. Hence, the inequality

e>i V (x,xx>)ej ≥ 0 (56)
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holds true for every x ∈ F and (i, j) ∈ H×H, where V : Rn × Sn → S|H| is defined as

V (x,X) , HXH> + hx>H> +Hxh> + hh>, (57)

H , {1, . . . , |L ∩ I|+ 2|L ∩ E|}, and e1, . . . , e|H| denote the standard bases in R|H|.
This leads to a strengthened relaxation of QCQP (1a)–(1c):

minimize
x∈Rn,X∈Sn

q̄0(x,X) (58a)

s.t. q̄k(x,X) ≤ 0, k ∈ I (58b)

q̄k(x,X) = 0, k ∈ E (58c)

X − xx> �Cr 0 (58d)

e>i V (x,X)ej ≥ 0, (i, j) ∈ V (58e)

where V ⊆ H×H is a selection of RLT inequalities.
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