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Abstract—We extract the lumped-parameter model of a
wound-rotor synchronous machine from its physics-based
magnetic-equivalent circuit model. Model extraction is formu-
lated as a weighted least square optimization with nonlinear
constraints in which time-domain trajectories of flux linkages,
currents, and the electromagnetic torque are used as input data to
obtain the parameters of qd0 model of the machine. The resulting
problem is non-convex and cannot be solved using standard
methods. The optimization problem is, therefore, convexified
using second-order cone programming relaxation. The solution
to the relaxed problem is used as an initial point for the
interior-point method, leading to a reliable framework. Accurate
estimations on stator resistance, leakage and mutual inductances
in stator and rotor, rotor speed, effective turns-ratio between
the field and stator windings, and the number of poles are
obtained. Estimated parameters are validated against measured
and estimated values reported in literature, and are used to
develop a behavioral qd0 macromodel of the machine.

Index Terms—Convex relaxation, magnetic-equivalent circuit,
parameter estimation, second-order cone programming, wound-
rotor synchronous machine.

I. INTRODUCTION

Electric machine models can be classified into lumped-
parameter models, such as abc phase-domain models, qd0
models, or voltage-behind reactance models [1], and those
based on the first principles of physics (Maxwell equations),
such as finite-element methods (FEM) or magnetic equiv-
alent circuits (MEC). Lumped-parameter macromodels are
suitable for system-level studies, drive-controller design, or
hardware-in-the-loop applications [1], [2]. FEM models are
highly accurate and closely mimic the hardware, but they
are computationally expensive and mainly used for the final
design verification. MEC modeling is an intuitive approach
based on the circuit theory. Herein, we extract a lumped-
parameter behavioral qd0 model using data generated by the
MEC model, thereby breaking the compromise between model
fidelity and simulation speed. We use a mesh-based MEC
model of a wound-rotor synchronous machine (WRSM) [3]–
[6] as it exhibits better numerical properties than its nodal-
based counterpart [7]. WRSMs are used in various appli-
cations, e.g., aircraft generators, ship propulsion, and wind
turbines [8]. qd0 model extraction is analogous to replacing
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Fig. 1. qd0 model extraction from the MEC model of a WRSM.

the spatially-distributed reluctance network of the MEC model
with equivalent lumped-parameter components (see Figure 1).

IEEE Std-115 [9] documents an array of tests to identify
synchronous machine parameters. Since it is not always fea-
sible to run all the necessary tests, various techniques esti-
mate machine parameters using transient measurements [10]–
[14]. In the absence of hardware measurement, high-fidelity
physics-based models, that closely mimic the experimental
prototype, can be used instead. Furthermore, detailed models
provide access to a host of variables that might not be available
experimentally due to a limited sensory. [15] and [16] have
used FEM models to determine the parameters of equivalent
circuits for an induction machine. [17] has used the data from
a pulse test applied to the FEM model of a synchronous ma-
chine to obtain its lumped-parameter model. However, MEC
models have not yet been exploited for such macromodeling
purposes. We formulate the parameter extraction process as a
weighted least-square problem with nonlinear constraints such
that minimizes the mismatch between trajectories produced by
the MEC model and those predicted by the qd0 model.

Due to the presence of nonlinear equality constraints the
proposed optimization problem is non-convex and cannot be
solved reliably using standard interior-point method (IPM)
solvers [18]–[20]. To eliminate the need for initialization we
propose a hybrid optimization framework based on second-
order cone programming (SOCP) relaxation. We relax the
original problem and feed the resulting solution to IPM in
order arrive to a fully-feasible and globally optimal solution
[21]. The contributions of this paper are summarized below:
• We have recovered machine parameters, namely stator
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resistance, rotor speed, stator leakage inductance, q-axis
magnetizing inductance, d-axis magnetizing inductance,
equivalent turns-ratio between the field and the stator
windings, and the number of poles. Extracted parameters
are compared against those values reported in literature.

• The model extraction is formulated as a non-convex
optimization problem using a hybrid SOCP and IPM
approach.

• The extracted qd0 model is validated against the MEC
model, and shown to capture dominant dynamical modes
with more than 20 times faster model execution.

The outline of the paper is as follows. Section II is a pre-
liminary review on the symbols and notations used throughout
the paper. Section III presents the dynamic MEC model and
the target qd0 model for WRSM. Section IV elaborates a
discrete qd0 model for WRSM, and formulates the parameter
extraction process as a non-convex optimization problem.
Section V presents SOCP relaxation and IPM formulations.
Section VI studies the implementation process and results.
Finally, Section VII concludes the paper.

II. NOTATION

Matrices and vectors are presented as bold uppercase and
lowercase variables, respectively (e.g., X or x). xi denotes the
ith element of vector x. Xij denotes the element in the ith

row and jth column of matrix X. Rn is the set of column
vectors of size n × 1. Rm×n is the set of matrices of size
m × n. Sn denotes the set of symmetric matrices of size n.
0m and 1m represent vectors of size m × 1 with all their
elements as 0 and 1, respectively. Similarly, 0m×n represents
a matrix of size m × n with all its element equal to 0. In
is an identity matrix of size n. ||x||2 denotes the Euclidean
norm of the vector x. diag(x) gives a diagonal matrix with
elements of the vector x along its diagonal. diag(X) gives a
vector with its elements the same as the diagonal of the input
matrix. diag(X,Y) produces a block diagonal matrix with
input matrices along its diagonal. (·)> indicates the transpose
operation. tr(X) denotes the trace of an input matrix X.
||x||2Z represents x>Zx. 〈X,Y〉 stands for the inner product
of matrices X and Y. ¯ denotes the square of a variable, e.g.,
x represents x2 for a scalar x and x is a vector with elements
of x squared. ()

1
2 of a vector denotes an element-wise square

root operation. ◦ and ⊗ denotes element-wise product and
kronecker product, respectively.

III. AB INITIO AND LUMPED-PARAMETER WRSM MODELS

A. Dynamic MEC Model

This section presents a concise overview of the mesh-based
MEC model of the WRSM in [3]–[6]. We have selected the
static MEC model in [3] and formed a dynamic MEC model
using the procedure laid out in [6]. Therein, the field current
and rotor speed are assumed constant. Damper windings are
ignored in [3]–[5]. Different segments of stator, rotor, and
airgap are modeled using flux tubes to form a magnetic circuit,
as seen in Figure 1. Reluctance formulation is based on the

geometry and permeability information of respective flux tubes
[6]. Kirchhoff’s voltage law on individual loops gives

RΦ = F , (1)

where R ∈ Snl is the matrix of reluctances, Φ ∈ Rnl is
vector of flux terms in each loop, F ∈ Rnl is the vector of
MMF sources, and nl is the number of loops. Note that due
to the rotor motion, the reluctances of the flux tubes in the
airgap region in matrix R changes with time and should be
recalculated at every step. The elements of F can be obtained
as the product of winding turns and currents for each magnetic
loop. One can get the flux linkages, λabcs, using [5]

λabcs = PN>abcsΦst, (2)

where P is the number of poles, Nabcs is the turns matrix
for stator windings, and Φst represents the flux in loops
corresponding to stator segments.

[6] has reformulated (1) such that flux linkages, λabcs, are
the inputs and winding currents, iabcs, are the output.[

R −csclNabcs(Ks)
−1

csclKsN
>
abcs 0

] [
Φ

iqd0s/cscl

]
=[

Nfld 0
0 csclI3/P

] [
ifld
λqd0s

]
. (3)

The idea is to incorporate the machine dynamics into the
otherwise static relation of current and flux in (1). iqd0s
and λqd0s are the currents and flux linkages of the stator
windings in the rotor reference frame. zqd0 = Kszabc, where
z represents flux linkages, currents, or voltages, and Ks is the
reference frame transformation matrix [1]. Nfld is the turns
matrix for the field winding. ifld is the field current. cscl is a
scaling factor to condition (3). Equation (3) can be solved to
obtain currents, iqd0s, for given flux linkages, λqd0s.

State-space representation of a synchronous machine in the
rotor reference-frame is [1]

dλqs
dt

= vqs − rsiqs − ωrλds, (4a)

dλds
dt

= vds − rsids + ωrλqs, (4b)

dλ0s
dt

= v0s − rsi0s. (4c)

vqs, vds, and v0s are the q-axis, d-axis, and 0-axis voltage
terms. rs is the stator resistance, and ωr is the rotor speed.
Dynamic MEC model solves (3) and (4) in tandem. The
electromagnetic torque is calculated using [5]

TMEC
e =

(
P

2

)2 na∑
j=1

(
φaj
Paj

)2
∂Paj
∂θr

, (5)

where φaj and Paj represent flux and permeance for the jth

loop in the airgap region. na is the number of airgap loops
(changing with the rotor position), and θr is the rotor position.

B. qd0 Model

State-space representation of a lumped-parameter model is
the same as (4). However, the relation between flux linkages
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and currents is formulated as [1]

λqs = (Lls + Lmq)iqs, (6a)

λds = (Lls + Lmd)ids +
2

3

Nfld
Ns

Lmdifld, (6b)

λ0s = Llsi0s. (6c)

Lls is the leakage inductance of stator, Lmq and Lmd are the
q- and d-axis magnetizing inductances, respectively. Nfld and
Ns are the lumped equivalency of spatially-distributed field
winding and stator winding, respectively. The electromagnetic
torque becomes

Te =
3P

4
(λdsiqs − λqsids) . (7)

qd0 parameter extraction from the MEC model is analogous to
replacing the flux linkage and current relation in (3) with (6).

IV. SETTING UP THE MODEL EXTRACTION PROCEDURE

In order to extract the qd0 model from the MEC model,
one can compare trajectories generated from (3), (4), and (5)
with those predicted by (6), (4), and (7) and minimize their
mismatch. This requires one to discretize the qd0 model.

A. Discretizing Machine Dynamics

While a host of methods are available, (e.g., Tustin’s [22]),
in this work, the forward Euler method is adopted for its sim-
plicity. The discretized state trajectory for a general dynamic
system dx

dt = f(x) using the forward Euler method is

x[τ + 1] = x[τ ] + ∆T × f(x) . (8)

x is the state, ∆T is the sampling time, and τ is the time
instance. The qd0 model in (4), (6), and (7) is discretized as

λ[τ + 1] = Aλ[τ ] +Ri[τ ] + v[τ ], (9a)
λ[τ ] = Li[τ ] + ` ifld, (9b)

Q× Te[τ ] =
3

4
λ>[τ ]Mi[τ ], (9c)

where λ[τ ] ∈ R3 and i[τ ] ∈ R3 are the flux linkages and
currents, respectively, in rotor reference frame at time instance
τ . The qd0 subscript is dropped for brevity. v[τ ] in (9a) is the
qd0 voltage terms times the sampling time, v[τ ] = vqd0[τ ]×
∆T . Matrices A, R, L, `, M , and Q in (9) are defined as

A ,

1 −a 0
a 1 0
0 0 1

, R ,

−r 0 0
0 −r 0
0 0 −r

, (10a)

Q ,
1

P
, L ,

l1 0 0
0 l2 0
0 0 l3

, (10b)

` ,

0
l4
0

, M ,

0 −1 0
1 0 0
0 0 0

, (10c)

where a , ωr∆T , r , rs∆T , l1 , Lls + Lmq , l2 , Lls +

Lmd, l3 , Lls, and l4 , 2
3
Nfld
Ns

Lmd. The model extraction
problem presented in following sections aims to determine the

parameters (a, r, l1, l2, l3, l4, Q) based on which, ωr, rs, Lls,
Lmq , Lmd, NfldNs

, and P can be uniquely determined.

B. Problem Formulation

Supposed that we are given the vectors λMEC[τ ], iMEC[τ ],
and TMEC

e [τ ] throughout a discrete time horizon τ ∈
{1, 2, . . .T}, representing flux linkages, currents, and torque
data from the MEC model, respectively. Then, the parameter
extraction for a qd0 model from the MEC data can be
formulated as the following optimization problem:

minimize
T∑
τ=1

∥∥λ[τ ]− λMEC[τ ]
∥∥2

Λα
+

T∑
τ=1

∥∥i[τ ]− iMEC[τ ]
∥∥2

Λβ

+

T∑
τ=1

γ
(
Te[τ ]− TMEC

e [τ ]
)2

(11a)

subject to

λ[τ+1]=λ[τ ]+a×
[
−λ2[τ ], λ1[τ ], 0

]>
−r × i[τ ]+v[τ ],

τ=1, 2, . . . ,T−1 (11b)
λ[τ ] = diag{[l1, l2, l3]}i[τ ] + l4×ifld, τ=1, 2, . . . ,T (11c)

Q× Te[τ ] =
3

4
λ>[τ ]

[
−i2[τ ], i1[τ ], 0

]>
, τ=1, 2, . . . ,T (11d)

variables{
λ[τ ] ∈ R3, i[τ ] ∈ R3, Te[τ ] ∈ R

}τ=T
τ=1

,

a, l1, l2, l3, l4, r,Q ∈ R.

The 3× 3 matrices Λα and Λβ are defined as

Λα ,

α1 0 0
0 α2 0
0 0 α3

 , Λβ ,

β1 0 0
0 β2 0
0 0 β3

 . (12)

where (α1, α2, α3), (β1, β2, β3) and γ are user-defined non-
negative weights given to flux, current and torque data, respec-
tively.

The objective function (11a) represents the total mismatch
between the MEC and qd0 trajectories. The equality constraint
in (11b) represents the state equation for the qd0 model.
Constraints in (11c) and (11d) form the flux linkage-current
relationship and torque expressions, respectively. The auxiliary
variable Q = 1/P is defined to reduce the order of torque
equation from three (cubic) to two (quadratic), which will
help in the following SOCP formulation. To summarize, the
optimization problem in (11) minimizes the sum of scaled
residuals for trajectories of flux linkages, currents, and torque
to uniquely obtain λ, i, Te, A, R, L, `, and Q subject to the
constraints in (11a) - (11d).

V. CONVEX RELAXATION AND NUMERICAL SEARCH

Without proper initialization, local search algorithms may
fail to converge to a globally optimal solution or even a
feasible point. To address this issue, we use SOCP relaxation
followed by IPM to reliably solve the problem (11a) - (11d).
The proposed convex relaxation is explained next.
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A. SOCP Relaxation

The original optimization problem in (11) is non-convex
due to the presence of bilinear terms:

• a λ2[τ ], a λ1[τ ] and r i[τ ] in (11b);
• l1 i1[τ ], l2 i2[τ ] and l3 i3[τ ] in (11c); as well as
• λ1[τ ] i2[τ ], λ2[τ ] i1[τ ] and Q Te[τ ] in (11d).

The aforementioned nonlinearity can be tackled by introducing
new variable (i.e., lifting the problem). To this end, define:

f [τ ] ,
[
aλ2[τ ], −aλ1[τ ], 0

]>
, (13a)

h[τ ] , r × i[τ ], (13b)

z[τ ] , diag{[l1, l2, l3]} i[τ ], (13c)

w[τ ] ,
[
λ1[τ ]i2[τ ], λ2[τ ]i1[τ ], 0

]>
, (13d)

θ[τ ] , Q× Te[τ ] (13e)

The aforementioned auxiliary terms participate in (11b) -
(11d) and can be used to simplify them as we will demonstrate
later. However, in order to streamline the relaxation process it
is necessary to reformulate the definitions in (13) as follows:

√
(ā− a2)

(
λ̄2[τ ]− λ2[τ ]2

)
= |f1[τ ]− aλ2[τ ]|,√

(ā− a2)
(
λ̄1[τ ]− λ1[τ ]2

)
= |f2[τ ]− aλ1[τ ]|,

f3[τ ] = 0 τ=1, 2, . . . ,T (14a)

√(
λ̄1[τ ]− λ1[τ ]2

)
(̄i2[τ ]− i2[τ ]2) = |w1[τ ]− λ1[τ ]i2[τ ]|,√(

λ̄2[τ ]− λ2[τ ]2
)

(̄i1[τ ]− i1[τ ]2) = |w2[τ ]− λ2[τ ]i1[τ ]|,
w3[τ ] = 0 τ=1, 2, . . . ,T (14b)

√
diag{[l̄1 − l21, l̄2 − l22, l̄3 − l23]}(ī[τ ]− diag{i[τ ]}i[τ ])

= |z[τ ]− diag{[l1, l2, l3]} i[τ ]| τ=1, 2, . . . ,T (14c)√
(r̄ − r2)(ī[τ ]− diag{i[τ ]}i[τ ])

= |h[τ ]− r × i[τ ]| τ=1, 2, . . . ,T (14d)√
(Q̄−Q2)(T̄e[τ ]− Te[τ ]2)

= |θ[τ ]−Q× T̄e[τ ]| τ=1, 2, . . . ,T (14e)

where

l̄1 , l21, l̄2 , l23, l̄3 , l23, (15a)

ā , a2, r̄ , r2, Q̄ , Q2, (15b)

λ̄[τ ] , diag{λ[τ ]}λ[τ ], τ=1, 2, . . . ,T (15c)

ī[τ ] , diag{i[τ ]}i[τ ], τ=1, 2, . . . ,T (15d)

T̄e[τ ] , Te[τ ]2 τ=1, 2, . . . ,T (15e)

It can be easily observed that the equations in (14) are
equivalent to (13). In what follows, we will transform all
of equalities in (14) and (15), in order to arrive to a convex

relaxation:

minimize
T∑
τ=1

α>
(
λ̄[τ ] + diag{λMEC[τ ]}(λMEC[τ ]− 2λ[τ ])

)
+

T∑
τ=1

β>
(
ī[τ ] + diag{iMEC[τ ]}(iMEC[τ ]− 2i[τ ])

)
+

T∑
τ=1

γ
(
T̄e[τ ]− 2 TMEC

e [τ ]Te[τ ] + TMEC
e [τ ]2

)
(16a)

subject to
λ[τ+1]=λ[τ ]−f [τ ]−h[τ ]+v[τ ], τ=1, 2, . . . ,T−1 (16b)
λ[τ ] = z[τ ] + l4×ifld, τ=1, 2, . . . ,T (16c)

θ[τ ] =
3

4
(w2[τ ]− w1[τ ]), τ=1, 2, . . . ,T (16d)

l̄1 ≥ l21, l̄2 ≥ l23, l̄3 ≥ l23, (16e)

ā ≥ a2, r̄ ≥ r2, Q̄ ≥ Q2, (16f)
λ̄[τ ] ≥ diag{λ[τ ]}λ[τ ], τ=1, 2, . . . ,T (16g)
ī[τ ] ≥ diag{i[τ ]}i[τ ], τ=1, 2, . . . ,T (16h)

T̄e[τ ] ≥ Te[τ ]2 τ=1, 2, . . . ,T (16i)

√
(ā− a2)

(
λ̄2[τ ]− λ2[τ ]2

)
≥ |f1[τ ]− aλ2[τ ]|,√

(ā− a2)
(
λ̄1[τ ]− λ1[τ ]2

)
≥ |f2[τ ]− aλ1[τ ]|,

f3[τ ] = 0 τ=1, 2, . . . ,T (16j)

√(
λ̄1[τ ]− λ1[τ ]2

)
(̄i2[τ ]− i2[τ ]2) ≥ |w1[τ ]− λ1[τ ]i2[τ ]|,√(

λ̄2[τ ]− λ2[τ ]2
)

(̄i1[τ ]− i1[τ ]2) ≥ |w2[τ ]− λ2[τ ]i1[τ ]|,
w3[τ ] = 0 τ=1, 2, . . . ,T (16k)

√
diag{[l̄1 − l21, l̄2 − l22, l̄3 − l23]}(ī[τ ]− diag{i[τ ]}i[τ ])

≥ |z[τ ]− diag{[l1, l2, l3]} i[τ ]| τ=1, 2, . . . ,T (16l)√
(r̄ − r2)(ī[τ ]− diag{i[τ ]}i[τ ])

≥ |h[τ ]− r × i[τ ]| τ=1, 2, . . . ,T(16m)√
(Q̄−Q2)(T̄e[τ ]− Te[τ ]2)

≥ |θ[τ ]−Q× T̄e[τ ]| τ=1, 2, . . . ,T (16n)
variables{
λ[τ ], i[τ ], λ̄[τ ], ī[τ ],f [τ ],h[τ ], z[τ ],w[τ ] ∈ R3

}T
τ=1

,{
Te[τ ], T̄e[τ ] ∈ R

}T
τ=1

,

a, l1, l2, l3, l4, r,Q, ā, l̄1, l̄2, l̄3, l̄4, r̄, Q̄ ∈ R.

Equality constraints in (16b) - (16d) are the same as those in
(11b) - (11d) which describe the WRSM model equations. The
inequalities in (16e) - (16k) implicitly impose (13) - (15) to
preserve equivalency to the original problem in (11) and the
convexified problem in (16). It is straightforward to observe
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that (16e) - (16k) are convex if formulated as linear matrix
inequalities:[
ā fk[τ ]

fk[τ ] λ̄3−k[τ ]

]
�
[
(−1)3−ka
λ3−k[τ ]

] [
(−1)3−ka
λ3−k[τ ]

]>
k=1, 2 (17a)[

λ̄k[τ ] wk[τ ]
wk[τ ] ī3−k[τ ]

]
�
[
λk[τ ]
i3−k[τ ]

] [
λk[τ ]
i3−k[τ ]

]>
k=1, 2 (17b)[

l̄k zk[τ ]
zk[τ ] īk[τ ]

]
�
[
lk
ik[τ ]

] [
lk
ik[τ ]

]>
k = 1, 2, 3 (17c)[

r̄ hk[τ ]
hk[τ ] īk[τ ]

]
�
[
r

ik[τ ]

] [
r

ik[τ ]

]>
k = 1, 2, 3 (17d)[

Q̄ θ[τ ]
θ[τ ] T̄e,k[τ ]

]
�
[

Q
Te,k[τ ]

] [
Q

Te,k[τ ]

]>
k = 1, 2, 3 (17e)

The optimization problem in (16) is a relaxation and its
solution may not be feasible for the original problem in (11).
Nonetheless, the SOCP solution can be used as an initial point
for any general purpose IPM solvers.

As an alternative to IPM, [23] proposes a penaliza-
tion method for finding feasible and near-optimal solu-
tions to problems of the form (11). This approach
is regarded as penalized convex relaxation. Let x̂ =(
{λ̂[τ ], î[τ ], T̂e[τ ]}Tτ=1, â, l̂1, l̂2, l̂3, r̂, Q̂

)
be an optimal solu-

tion for the SOCP relaxation problem (16). If x̂ is not feasible
for the original nonconvex problem, one can incorporate a
penalty term of the form

κ
(
{λ̂[τ ], î[τ ], T̂e[τ ]}Tτ=1, â, l̂1, l̂2, l̂3, r̂, Q̂

)
= ηa(ā− 2âa+ â2) + ηr(r̄ − 2r̂r + r̂2)

+ ηQ(Q̄− 2Q̂Q+ Q̂2) + ηl1(l̄1 − 2l̂1l1 + l̂21)

+ ηl2(l̄2 − 2l̂2l2 + l̂22) + ηl3(l̄3 − 2l̂3l3 + l̂23)

+ ηλ

T∑
τ=1

(1>3 λ̄[τ ]− 2λ̂>[τ ]λ[τ ] + λ̂>[τ ]λ̂[τ ])

+ ηi

T∑
τ=1

(1>3 ī[τ ]− 2î>[τ ]i[τ ] + î>[τ ]̂i[τ ])

+ ηTe

T∑
τ=1

(T̄e[τ ]− 2T̂e[τ ]Te[τ ] + T̂ 2
e ). (18)

in the objective function of relaxation and solve addi-
tional rounds of SOCP to obtain fully feasible points
with satisfactory objective values. In (18), the parameters
ηa, ηr, ηQ, ηl1 , ηl2 , ηl3 , ηλ, ηi, ηTe ≥ 0 are user-defined.

VI. MODEL GENERATION AND VERIFICATION

A. System Setup

The MEC model of a 2 kW WRSM is adopted from [3].
The machine is constructed using M19 steel laminations, and
copper conductors are used for stator and field windings. The
optimization experiments are run on a workstation equipped
with Intel(R) Core i7-6700 CPU (4 cores) at 3.40 GHz and 32
GB of RAM with Windows 10. The SOCP optimization prob-
lem in (16) is solved using the SDPT3 4.0 [25] and MOSEK
[26] solver running on CVX [27] in the MATLAB 2017b
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Fig. 2. Time-domain transients for flux linkages, currents, and electro-
magnetic torque. Operating condition is ifld = 0.25 A, ωr = 3600
RPM, vqs = 10 V, vds = 0 V, and v0s = 0.25 V. The sampling
length is ∆T = 2.22 × 10−4s. Only the highlighted sections of the
data are used for model extraction.

environment. Local search is implemented using MATPOWER
Interior Point Solver (MIPS) [28].
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TABLE I
MACHINE PARAMETERS EXTRACTED USING IPM

Parameter MEC [3], [24] Hardware [3] Estimated %Mismatch %Mismatch
Parameters (wrt MEC) (wrt Hardware)

ωr*(rad/sec) 376.99 376.99 377.10 0.02 0.02
rs(Ω) 0.1729** 0.21 0.1738 0.52 17.23
Lls (mH) 0.83 0.90 0.75 9.06 16.13
Lmq (mH) 3.06 3.07 2.94 3.74 4.05
Lmd (mH) 4.71 4.46 4.74 0.66 6.30
Nfld
Ns

10.94 Not available 11.16 2.00 -
P 4 4 3.90*** - -

*Electrical angular speed of the rotor. **Directly obtained from the MEC model. ***P , takes
even integer values.

TABLE II
SOCP RESULTS

Parameter MEC [3], [24] Estimated %Mismatch
Parameters (w.r.t. MEC model)

ωr*(rad/sec) 376.99 376.98 0.0005
rs(Ω) 0.1729** 0.1729 0
Lls (mH) 0.83 0.27 67.47
Lmq (mH) 3.06 3.38 10.45
Lmd (mH) 4.71 5.19 10.19
Nfld
Ns

10.94 10.23 6.50
P 4 4.44*** -

*Electrical angular speed of the rotor. **Directly obtained from
the MEC model. ***The number of poles, P , takes even integers.

B. Training Data Generated by the Dynamic MEC Model

We have considered an unbalanced operation of the WRSM
to generate training data with non-zero zero-sequence flux
linkage and current components. Zero initial conditions are
assumed for the states. Figure 2 shows the flux linkages,
currents, and electromagnetic torque waveforms generated
using the MEC model. The highlighted portions of plots in
Figure 2, that include 100 data points, are used in parameter
extraction. More data points will improve the solution, albeit
at the expense of computational time.

C. Model Extraction Procedure

The optimization problem in Section V-A is first solved
using SOCP. The result is used as an initial condition
for IPM. The tuning gains for SOCP are Λα = Λβ =
diag {1, 1, 0.001} and γ = 1. A flat initial condition is
assumed with all unknown variables set to 1. The length of the
time horizon is T = 100. SOCP solves (16) over a convexified
version of the feasible set of (11). Table II shows the SOCP
results. The obtained set is not necessarily a feasible point
(e.g., see Lls), but can be a good initial point for IPM. In
comparison, in all of our experiments, five rounds of penalized
relaxation resulted in feasible points and parameters similar to
those of IPM.

The tuning gains for IPM are Λα = diag
{

104, 104, 104
}

,
Λβ = diag {0.001, 0.001, 0.001}, and γ = 0.1. Table I
tabulates the parameters extracted by IPM after solving (11).

These parameters are compared against those reported in [3]
(corresponding to MEC-BH1 model). Reference value of the
stator resistance, rs = 0.1729 Ω, is directly obtained in
the MEC model [3] using equivalent length and area of the
windings. The reference value for the effective turns ratio
between the field and stator windings, NfldNs

, is taken from that
reported in [24]. As seen in Table I, the percentage mismatch
for the estimated parameters w.r.t. MEC reference values is
highest for Lls at 9.96%, whereas the rest of the parameters are
estimated within 3.8% accuracy. Estimation error with respect
to the hardware values is obviously higher given the inherent
mismatch between the original MEC model and the hardware
prototype in [3]. It should be noted that parameters reported
for MEC model should be considered for comparative purpose.

In the problem formulation in (11) and (16), transients
of flux linkages, currents, and electromagnetic torque are
also considered as optimization variables. The IPM solution
recovers these variables along with the machine parameters.
Figure 3 compares the time-domain transients of input MEC
data and the trajectories obtained by the IPM in the optimiza-
tion process. As expected, the optimization algorithm aims to
minimize the mismatch between the trajectories of the input
MEC model and the extracted qd0 model.

D. MEC vs qd0 Model Comparison
The MEC model of the WRSM had been validated against

a hardware prototype [3]. Herein, we reproduce Figure 10a
of [3] to compare our qd0 model against the validated MEC
model. The WRSM is run under an open circuit with ifld = 1
A and ωr = 1000 RPM. Figure 4 shows the phase-a voltage
waveform for the extracted qd0 model, and that obtained by
the static MEC model. The harmonic effects of the spatial
distribution of stator slots are evident in the MEC model. The
voltage waveform produced by both models are in agreement.

Next, the qd0 model and the dynamic MEC model are
simulated with ifld = 1 A, ωr = 3600 RPM, and a balanced
load Rload = 20 Ω. The phase-a transients, as seen in Figure
5, show that the resulting qd0 model mimic the essential
dynamics of the MEC model. The physical time for a 5-cycle
(83.3 ms) simulation run for the MEC and qd0 models are
0.8362 s and 0.0377 s, respectively. The qd0 model is more
than 20 times faster than the dynamic MEC model.
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Fig. 3. Trajectories obtained from IPM compared with the input MEC
data.

VII. SUMMARY

The macromodel of a 2 kW WRSM is successfully extracted
from its dynamic MEC model. The parameter extraction pro-

Rotor Position (deg)

Vo
lta

ge
 (V

)

0 20 40 60 80 100 120 140 160 180
-4

-2

0

2

4

MEC
qd0

Fig. 4. Open-circuit operation of the static MEC model in [3] and
the resulting qd0 model (ifld = 1 A, ωr = 1000 RPM).

cess is formulated as an optimization problem; This problem
is first covexified using the SOCP relaxation method and, then,
the resulting solution is used to initialize the IPM solver. We
have successfully extracted all the machine parameters within
4% accuracy with respect to the original MEC model; The
leakage inductance, Lls, was estimated within 10% accuracy.
The extracted qd0 model is compared against MEC model, and
exhibits very high fidelity despite an appreciable gain in the
simulation speed. Future work will study the effect of magnetic
saturation in the macromodel extraction.
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