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Abstract—This paper copes with the joint state estimation and
topology identification problem in direct current (DC) networks.
This problem is challenging due to binary decisions and non-
linear relations between sensor measurements and state variables.
We introduce a non-convex nuclear norm estimator whose non-
convexity is addressed by incorporating two inertia terms. In the
presence of noise, penalty terms are integrated into the objective
function to estimate unknown noise values. Numerical results for
the modified IEEE 9-bus, 14-bus, and 30-bus systems corroborate
the merits of the proposed technique. Furthermore, this technique
is experimentally validated for a converter-augmented 14-bus
system in a real-time hardware-in-the-loop environment.

Index Terms—Convex optimization, DC network, state estima-
tion, topology identification.

I. INTRODUCTION

D IRECT current (DC) networks are gaining prominence
with the increasing penetration of DC-native sources,

loads, and storages, since they offer improved efficiency in
conversion/distribution over alternating current (AC) networks.
For static distribution topologies, estimation techniques can
extract the system state to be used in network analysis,
control, optimization, or diagnostic under normal, emergency,
or restorative operations [1]. The most recent topology infor-
mation is needed to meaningfully carry out the state estimation
process; any error or misconfiguration in the assumed topology
could result in inappropriate control decisions [2], [3]. Incor-
porating statuses of the lines, that collectively describe the
overall network topology, into the state estimation process is
challenging as they introduce binary variables [4], [5]. More-
over, converter-populated DC networks might employ fewer
sensors due to cost, security, or privacy concerns, leading to
low-observability conditions.

Classical state estimation is usually solved by Gauss-
Newton approaches that might converge to a local minima [6].
Convex relaxation methods can either directly solve the esti-
mation problem [7] or provide an initial guess for the Newton’s
method [8]. Convergence guarantees for the estimation process
using convex relaxation techniques are given in [9]. With
measurement redundancy, incorporating penalty terms in the
formulation of the objective function can help cleansing noise
and bad data [10]–[12]. These techniques, however, assume a
fixed network topology.

Topology identification is either a prerequisite to the es-
timation process, or should be considered concurrently. The
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combined problem can be solved using a Gauss-Newton
method, e.g., generalized state estimation (GSE) [4], or convex
relaxation methods [5]. Inverse power flow formulation can
describe the network topology through a nodal admittance ma-
trix [13]. These studies usually assume imperfect but highly-
redundant measurement. Low-observability condition refers to
the sparse sensor that results in an under-determined system.
Additional sensors placement [14] or pseudo-measurements
from existing sensors data [15] are needed, but this comes with
additional cost, computational burden, or estimation errors
[16]. The matrix completion method, that offers a solution to
an under-determined system, has been applied to distribution
networks with poor sensors installation [17], [18]. While the
joint state estimation and topology identification problem has
been studied for AC networks [5], its solution has not yet been
elaborated under low-observability conditions [16], [19]–[22].
Moreover, state estimation and topology identification of DC
networks are rare in the literature [23]–[25], and have not even
considered the observability conditions.

We leverage the physical properties of DC networks to
develop a polynomial-time joint estimation and topology iden-
tification algorithm using a limited number of measurement.
We formulate this as a non-convex mixed-binary problem,
develop a non-convex nuclear norm estimator, and address
this non-convexity by using two inertia terms. The presence
of zero injection buses (i.e., a bus with no load or converter)
is used to strengthen the convex relaxation and decrease the
number of required sensors. The resulting formulation does
not rely on prior knowledge of unmonitored line-statuses,
current, or power flow measurements that could infer topology
information. The devised convex optimization framework is
robustified against noise by upgrading to a penalized convex
program. The proposed formulation is in a generic form, and
can be solved with various numerical solvers.

The remainder of this paper is organized as follows. Section
II gives the preliminaries. Section III defines the joint state
estimation and topology identification problem for noiseless
measurements. This non-convex problem is transformed into
convex surrogate using two inertia terms and, then, extended to
accommodate noisy measurements. In Section IV, the resulting
state estimation and topology identification solution is verified
through numerical and experimental benchmarks. Section V
concludes the paper.

II. NOTATIONS AND TERMINOLOGIES

A. Notations
Throughout this paper, bold uppercase and lowercase letters

(e.g., X, x), refer to the matrices and vectors, respectively.
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n×1 vectors of zeros and ones are represented by symbols 0n
and 1n, respectively. 0m×n refers to the m × n zero matrix.
In×n is the n × n identity matrix. The symbol R defines
the sets of real numbers. The matrix entries are presented
by indices (i, j). The superscript (·)> shows the transpose
operator. | · | represents the absolute value of a vector/scalar
or the cardinality of a set. Tr(·) refers to the trace of a given
matrix. ‖ · ‖2 stands for the euclidean norm of a given vector.
‖ · ‖∗ represents the nuclear norm of a given matrix. diag{·}
composes a vertical vector from diagonal elements of a given
matrix. The notation X � 0 means that X is a positive semi-
definite matrix.

B. Terminologies

Consider a DC distribution network, where distribution lines
are resistive and DC-DC converters interface energy resources
to the distribution network as demonstrated in Figure 1. DC
network is shown as a directed graph H = (N ,L), with N
and L as the sets of buses and lines, respectively. Each bus can
accommodate a power electronics converter, a resistive load,
and/or a constant power load.

Define the pair ~L, ~L ∈ {0, 1}|L|×|N| as the from and to line
incidence matrices, respectively. ~Ll,i = 1 if and only if the
line l starts at bus i, and ~Ll,i = 1 if and only if the line l
ends at bus i. The conductance of a line l ∈ L is gl, with
g ∈ R|L| as the line conductance vector. G ∈ R|N |×|N| is the
bus conductance matrix. ~G and ~G ∈ R|L|×|N| are the from
and to line conductance matrices, respectively.

Let n denote the number of buses, i.e., n = |N |. v =
[v1, v2, ..., vn]

> is the vector of voltages with vk ∈ R as the
voltage at bus k ∈ N . Let ik ∈ R refer to the current-injection
at bus k ∈ N , while i = [i1, i2, ..., in]

> is the corresponding
vector. Given a line l ∈ L, there are two current signals, ~ıl ∈
R and ~ıl ∈ R, entering the line via its from and to ends,
respectively. ~ı = [~ı1,~ı2, ...,~ı|L|]

> and ~ı = [ ~ı1, ~ı2, ..., ~ı|L|]
> are

the vectors of corresponding composites. We assume there is
no interlinking converter in the network; hence ~ı = − ~ı. v̂k, ı̂k,
and x̂l denote the measured voltage and the current-injection
at bus k ∈ N , and the status of line l ∈ L, respectively. vk
and xl refer to the estimated voltage at bus k ∈ N , and the
identified status of the line l ∈ L, respectively.

III. JOINT STATE ESTIMATION AND TOPOLOGY
IDENTIFICATION

A. Problem Formulation

We will exploit the power flow equations of a DC network to
express this problem as a constrained minimization program.
The available measurements are: (i) voltage values at some
of the randomly-chosen buses, (ii) current-injection values at
some of the randomly-chosen buses, and (iii) some of the line
statuses. The Ohm’s law dictates that the current flow from
both sides of each line, and the current-injection at each bus,
can be respectively represented as

~ı = diag{ ~G v x>}, ~ı = −~ı, (1)

i = ~L> ~ı+ ~L> ~ı. (2)
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Fig. 1. A portion of a DC distribution network with three buses. The network
is endowed with sensors at buses 1 and 2 and the line between buses 1-3 to
collect data (v̂1, v̂2, x̂1, ı̂1, ı̂2). Optimizer jointly performs state estimation
and topology identification using these limited measurements, and infers
unknown voltage, v3, and statuses of the lines, x2, x3.

Note that (1) and (2) hold true unless there is an interlinking
converter on the line.

The state estimation and topology identification algorithm
simultaneously finds the voltage vector, v, and the line-status
vector, x, while satisfying all the measurement equations

find v ∈ R|N |,x ∈ R|L| (3a)
subject to vk = v̂k ∀k∈Sv (3b)

e>k diag{Gvx>} = ı̂k ∀k∈Si (3c)

xlb ≤ x ≤ xub (3d)

x ∈ {0, 1}|L| (3e)

where {e1, ..., eN} are the basis vectors in Rn. Here, mea-
surement equations refer to the nonlinear relations between
sensor outputs and state variables as in (3c). For xlb and xub,
the conditional expressions can be given as

xl
lb=xl

ub=1, if line l∈L is known to be connected,

xl
lb=xl

ub=0, if line l∈L is known to be disconnected,

xl
lb=0, xl

ub=1, if the status of line l is undetermined.

Here, xllb and xlub refer to the lower and upper bound of line
statuses.

Equation (3b) enforces the voltage value to be equal to
the sensor measurement if the corresponding bus is equipped
with a voltage sensor (i.e., a monitored bus). vk and v̂k
denote voltage values to be estimated and to be measured for
every bus k ∈ Sv , respectively. Sv denotes the set of voltage
measurements. Equality constraint (3c) aims to find the voltage
value and line status that fit the corresponding input value, ı̂k,
from a set of current-injection measurements, Si. Problem (3)
is non-convex because of vector multiplication in vx> and
the binary variables accounting for the statuses of the lines.
In the next section, we offer a convex reformulation for this
problem.
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B. Convexification of the Problem Formulation

We introduce the following convex optimization problem
using the auxiliary variable A accounting for vx>

minimize
A∈R|N|×|L|
v∈R|N|
x∈R|L|

‖M1
2(A−vx>)N1

2 ‖∗+‖v−v0‖2M+‖x−x0‖2N

(4a)
subject to vk = v̂k ∀k∈Sv (4b)

e>k diag{GA} = ı̂k ∀k∈Si (4c)

e>kA = v̂kx
> ∀k∈Sv (4d)

Ad>l = vx̂l ∀l∈Sx (4e)

xlb ≤ x ≤ xub (4f)

v (xlb)> ≤ A ≤ v (xub)> (4g)

where M � 0 and N � 0 are arbitrary basis matrices to be
designed later. {d1, ...,dL} are the standard basis vectors in
R|L|. v0 and x0 are the initial guesses for the elements of the
voltage and the line-status vectors. They are chosen as 380 V
and 1n, respectively, to satisfy flat start operating conditions
and imply a fully-connected network.

Notice that the bi-linear term vx> in (3c) is replaced by A
in (4c) and, therefore, we are dealing with a linear constraint.
The nuclear norm term, ‖A−vx>‖∗, implicitly imposes the
non-convex equality A , vx> by penalizing the difference.

Proposition 1. Let v∗ and x∗ be the solution to (3), and
define A∗ , v∗x∗>. The constraints in (4d), (4e), and (4g)
are valid for A, v, and x>.

Proof. Consider arbitrary voltage and line-status vectors v and
x, respectively. Let v∗ and x∗ be the solutions to (3), when
voltage and current-injection measurements are chosen from
the sets Sv and Si, respectively. Constraint (4d) becomes

e>kA
∗ = ekv

∗x> = vkx
> ∀k∈Si. (5)

This implies that the constraint (4d) holds for any given
k ∈ N . For every l ∈ L, (4e) leads to the following equality

A∗d>l = v∗x>dl = vxl ∀l∈Sx, (6)

where it shows that vxl becomes equivalent to (4e). Similarly,
for every k ∈ N and l ∈ L, (4g) becomes

xl
lb ≤ xl

∗ ≤ xlub, (7a)

⇒ vk
∗xl

lb ≤ vk∗xl∗ ≤ vk∗xlub, (7b)

⇒ vk
∗xl

lb ≤ Akl
∗ ≤ vk∗xlub. (7c)

Note that (4g), (7b), and (7c) are equivalent. Equations (5),
(6), and (7) complete the proof for the valid inequalities in
(4).

Remark 1. Observe that the nuclear norm term in (4a), ‖A−
vx>‖∗ is non-convex. The inertia terms ‖v−v0‖2M and ‖x−
x0‖2N are added to convexify the overall objective function.
This is formally stated by the following theorem.

Remark 2. The presence of matrices M and N indicates
that the choice of basis can be arbitrary. We will demonstrate
howM andN can boost the convergence rate of the proposed
approach. A penalty term induced by a physical quantity, such
as loss, can help address the non-convexity.

Theorem 1. The function f : Rn×l × Rn × Rl → R, defined
as

f(A,v,x),‖M
1
2 (A−vx>)N

1
2 ‖∗+‖v−v0‖2M+‖x−x0‖2N , (8)

is convex.

Proof. Define new variables B ,M
1
2AN

1
2 , s ,M

1
2v, and

r , N
1
2x. It suffices to show that the following function is

convex:

g(B, s, r) , ‖B − sr>‖∗ + ‖s‖22 + ‖r‖22. (9)

According to triangle inequality we have:

g(Λ,ν, ξ)−θg(B1, s1, r1)− (1−θ)g(B2, s2, r2) ≤ 0, (10)

where Λ, ν, and ξ are

Λ = θB1 + (1− θ)B2, (11a)
ν = θs1 + (1− θ)s2, (11b)
ξ = θr1 + (1− θ)r2. (11c)

The inequality in (10) can be expanded as

‖Λ−[ν][ξ]>‖∗−θ‖B1−s1r>1 ‖∗−(1− θ)‖B2 − s2r>2 ‖∗
≤‖θs1r>1 + (1− θ)s2r>2 − [ν][ξ]>‖∗
=θ(1− θ)‖s1 − s2‖2‖r1 − r2‖2. (12)

Further simplification of (12) leads to

‖ν‖22+‖ξ‖22 − θ(‖s1‖22+‖r1‖22)−(1−θ)(‖s2‖22 + ‖r2‖22)
= − θ(1− θ)[‖s1 − s2‖22 + ‖r1 − r2‖22], (13)

which completes the proof of Theorem 1.

C. The Choice of Basis Matrices

The original problem in (3) has been expressed as a convex
optimization problem (4) with basis matricesM andN . These
basis matrices should be chosen properly such that the solution
to (4) satisfies the problem in (3). Inspired by [12], matrix M
is chosen to represent the network’s total power loss.

Power flow on a line l ∈ L can be calculated for the two
neighboring buses (i, j) ∈ N as

~pl = vi(vi − vj)glxl, (14a)
~pl = vj(vj − vi)glxl, (14b)

where ~pl and ~pl denote the power flow from the starting and
ending sides of each line l ∈ L. Power loss on a line is

~pl + ~pl = vi(vi − vj)glxl + vj(vj − vi)glxl (15a)

= (vi
2 − vivj + vj

2 − vivj)glxl (15b)
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= (vi
2 + vj

2 − 2vivj)glxl (15c)

= (vi − vj)(glxl)(vi − vj)>. (15d)

The total power loss is the sum of power flows entering the
lines through their starting and ending buses as

~p = diag{~L v v> ~G>}, ~p = diag{ ~L v v> ~G>} (16a)∑
(~p+ ~p) =Tr(v v>( ~G> ~L+ ~G> ~L)) (16b)

= v> ( ~G> ~L+ ~G> ~L) v. (16c)

Using (16c), we can chose M as

M = ( ~G> ~L+ ~G> ~L). (17)

Notice that if M is chosen as in (17), which is actually
equal to the conductance matrix G, loss minimization will
be indirectly embedded in the objective function (4a) with a
proper choice of N . N = Il×l implicitly penalizes the power
loss over all the lines as given in (15).

D. Strengthening the Convex Relaxation

Power networks usually have intermediate buses (or hidden
nodes [13]) that do not demand/supply power or current with
any external source or load, e.g., see bus 3 in Figure 1.
These intermediate buses are referred to as zero injection buses
[26]. We exploit their presence to define a number of valid
inequality and strengthen the convex relaxation in (4).

Definition 1. A bus k ∈ N is regarded as a zero injection bus
if both power and current injections at bus k are zero, i.e.,if
no load or source is located at the bus [12]. The set of zero
injection buses are presented by Z .

Proof. Let v∗ and x∗ be the solutions to the original problem
(3). Then,

e>k diag{Gv∗x∗
>} = 0n (18)

holds for every k ∈ Z , where n = |Z|.
For zero injection buses, the sum of the currents absorbed

from the distribution network is equal to the sum of the
currents they supply to the distribution network. This feature
can be expressed as

e>k diag{Gv∗x∗
>} =

|K|∑
l=1

d>l (
~L diag{ ~Gv∗x∗>}+ ~L diag{ ~Gv∗x∗>}), (19)

where K denotes the set of neighboring buses of the zero
injection bus k. The following formulation can be inferred
from (19)

|K|∑
l=1

d>l (
~L diag{ ~Gv∗x∗>}) =

−
|K|∑
l=1

d>l (
~L diag{ ~Gv∗x∗>}), (20)

concluding that (18) is valid for any k ∈ Z .

According to (20), the set of additional constraints

e>k diag{GA} = 0n (21)

can be added in (4) to strengthen its relaxation.

E. Estimation in the Presence of Noisy Measurements

The convex problem (4) can become infeasible, or result in a
poor approximate, if available measurements become noisy. In
this case, solving the state estimation problem requires tackling
two concerns: (i) how to address non-linear relation between
sensor measurements and state variables, (ii) how to address
corrupted sensor measurements. We introduce auxiliary vari-
ables o ∈ R|N | and a ∈ R|L| to handle measurement noise.
A new variable u ∈ R|N | accounts for the o2. Unknown
measurement noise can be estimated by incorporating these
auxiliary variables as convex regularization terms into the
objective function (4a). The DC network state estimation
problem for a static distribution network, that is robust to noisy
measurements, can be formulated as

minimize
A∈R|N|×|L|
u,v,o∈R|N|

x,a∈R|L|

‖M1
2(A−vx>)N1

2 ‖∗+‖v−v0‖2M+‖x−x0‖2N

+ µ1(1
>u) + µ2‖a‖22 (22a)

subject to vk = v̂k − ok ∀k∈Sv (22b)

e>k diag{GA} = ı̂k − ak ∀k∈Si (22c)

A d>l = v x̂l ∀l∈Sx (22d)

xlb ≤ x ≤ xub (22e)

v (xlb)> ≤ A ≤ v (xub)> (22f)

o2k ≤ uk ∀k∈Sv (22g)

[
xl v̂kxl −Akl

v̂kxl −Akl uk

]
� 0 ∀k∈Sv, ∀l∈L (22h)

where µ1 ≥ 0 and µ2 ≥ 0 are pre-selected coefficients that
balance the data fitting cost µ1(1

>u) + µ2‖a‖22 with the
remaining elements of the objective function in (22a). The
objective function (4a) aims to handle the non-linearity of
the measurement equation, while convex regularization term
added in (22a) deals with the noisy measurements.

Proposition 2. Let v∗, x∗, o∗, and u∗ be the ground-truth
values for the original problem (3). Let u∗ , o∗2 and
A∗ , v∗x∗>. Then, the constraint (22h) is satisfied.

Proof. Since v∗k and x∗l are positive, one can write

A∗kl = v∗kx
∗
l ⇔ A∗kl = (v̂k − o∗k)x∗l (23a)

⇒ v̂kx
∗
l −A∗kl = o∗kx

∗
l ⇔ (v̂kx

∗
l −A∗kl)2 = o∗k

2x∗l
2 (23b)

⇒ (v̂kx
∗
l −A∗kl)2 = u∗kx

∗
l ⇔ (v̂kx

∗
l −A∗kl)2 ≤ u∗kx∗l (23c)
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As seen, (23) is equivalent to (22h) under the proposition
3. This completes the proof.

If pre-selected coefficients are chosen as µ1 = 0 and
µ2 = 0, the objective function (22a) is reduced to the
objective function (4a), which can only contrive the non-
convexity of the measurement equations in noiseless scenarios.
If µ1 = +∞ and µ2 = +∞, then the objective function (22a)
prioritizes estimating the unknown noise values while ignoring
the remaining elements.

It should be noted that the goal is to find an approximate
solution for the state estimation problem in the presence
of noisy measurements without increasing the number of
available sensors. Alternatively, (22) could cleanse all the noise
on measurements with the help of redundant sensor.

IV. CASE STUDIES

In the following, standard IEEE AC benchmarks are trans-
formed into DC benchmarks by replacing AC generators
with DC-DC converters, and making distribution lines purely
resistive. All lines are equipped with switches to control the
network topology. If monitored, a bus is equipped with a
sensor to measure voltage and/or a sensor to measure current
injection. Monitored lines refer to the lines with a sensor.
The optimization problem is run using the conic interior-point
solver, MOSEK [27], in the CVX [28] optimization package.

A. Numerical Studies

The joint state estimation and topology identification prob-
lem is examined for the modified IEEE 9-bus, 14-bus, and
30-bus systems [29]. We compare our method in (4), using
proper basis M and N values in (17) and the set of additional
constraints in (21), with the conventional GSE method [4].
Each simulation has a time horizon with 100 steps; random
changes in voltage levels and an arbitrary line removal happen
at every time-step and every fifth time-step, respectively. This
100-run simulation is repeated as the total number of sensors
increases. Each approach has a flat start with 10−6 as the
mismatch threshold to conclude a successful run. The success
of the GSE method hinges on a full observability condition
that would require highly-redundant sensor allocation. As
seen in Figures 2 (a)-(c), the proposed method significantly
outperforms the GSE approach.

B. Experimental Studies

In the modified 14-bus system, the input voltage of DC-DC
buck converters is 500 V, while the distribution network is
rated for 380 V. The ratings of the power converters located
at buses 1, 2, 3, 6, and 8 are 150 kW, 50 kW, 100 kW, 100
kW, and 50 kW, respectively. Sample consumption trajectories
for the six out of eleven loads are given in Figure 4. The con-
sumption profiles intentionally mimic a 24-hour load pattern,
and are generated using poisson distribution. This distribution
assumes that the sudden load changes occur randomly with
the probability mass function, P (k) = e−λ

λk

k! . Here, k and
λ denote the type and average number of load changes. The
voltage sensors are placed on the buses with a power converter.
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Fig. 2. Comparative convergence rates of proposed and generalized state
estimation methods for the IEEE (a) 9-bus, (b) 14-bus, and (c) 30 bus systems.

The current injection values are measured for buses (N \ Z)
that are not zero-injection buses. It should be observed that
bus 7 and bus 14 of the IEEE-14 bus system are zero injection
buses. The statuses of ten lines are monitored as illustrated in
Figure 3. The internal droop mechanism of power converters
regulate their output voltage in response to output power
variations due to the changes in the load profile or network
topology. This network is emulated in a HIL environment,
with a dSPACE DS 1202 MicroLabBox to implement droop
controllers for individual converters, and a Typhoon HIL 604
unit to emulate power converters and the distribution network.
The proposed optimization algorithm runs on a 16-core Xeon
PC with 256 GB RAM.

1) Noiseless measurements: We consider a time horizon,
where the statuses of unmonitored lines change randomly and
load profiles are dynamic. The proposed formulation in (4),
with M = G, N = Il×l, and the set of additional constraints
in (21), finds states and topology configurations every five
seconds. Figure 6 shows the recovered (v) and the ground-
truth (ṽ) voltage values for the unmonitored buses. Figure 7
presents the recovered (x) and the ground truth (x̃) values for
the statuses of unmonitored lines in response to the removal
of an arbitrary line. It can be seen that the proposed method
yields a very good pursuit of ground-truth values for voltages
and statuses of the lines when measurements are assumed
noiseless. So far, we haven’t used any penalty term or tuning
parameter in the convex program (4). The average time for
finding states and topology configurations is 2.208 sec.
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Fig. 3. The IEEE 14-bus system augmented with 5 converters at buses 1, 2, 3,
6, and 8 (shown by ), and equipped with sensors to monitor voltages (shown
by ), line statuses (shown by ), and injected current at bus k ∈ N \{Z}.
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the real-time hardware emulation (Typhoon HIL), controller implementation
(dSPACE), and TCP/IP communication link for data transfer.

2) Noisy measurements: All the voltage and current mea-
surements are corrupted by zero-mean Gaussian noises with
1% standard deviation of the corresponding noiseless value.
The proposed formulation in (22), with M = G and N =
Il×l, finds system states every five seconds. The pre-selected
coefficients in (22), that balance the data fitting cost, are set
to µ1 = 104 and µ2 = 10−2. These coefficients improve the
accuracy of the noise estimation on voltages (u) and currents
(a). Here, root-mean-square error (RMSE) is considered as a
performance metric to assess the estimated voltages v under
the zero-mean Gaussian noise that has 1% standard deviation
for all the measurements. The RMSE of the v is formalized as
ψ(v) := ‖v−ṽ‖2/‖ṽ‖22. The RMSE of the estimated voltages
obtained by (22), shown in Figure 8, demonstrates that approx-
imate solution is recoverable with 99.85% accuracy. Figure 9
shows the corrupted (v̂), recovered (v), and the ground truth
(ṽ) voltage values where bus measurements are corrupted by
1%. It can be seen that the proposed method yields a very close
pursuit of ground-truth voltage values when all the voltage and
current measurements are subject to noise. Determination of
states in the presence of noisy measurements takes 2.653 sec
on average.

V. CONCLUSION

This paper offers a convex optimization framework to solve
the joint state estimation and topology identification problem
using only a limited number of measurement for converter-
augmented DC networks. This problem is formulated as a
constrained minimization problem, where a proper choice
of objective function obviates any tuning coefficient in the
absence of measurement noise. The problem formulation is
then extended for the noisy measurements by adding auxiliary
variables to account for convex regularization terms in the
objective function. The proposed method is studied where the
set of measurements are: (i) voltage values at some of the
randomly-chosen buses, (ii) current-injection values at some of
the randomly-chosen buses, and (iii) some of the line statuses.
The convex formulation in the absence of measurement noise
is validated through numerical tests using IEEE 9-bus, 14-
bus, and 30-bus benchmarks, and HIL experimentation using
modified IEEE 14-bus system. Furthermore, the solution in the
presence of 1% measurement noise is verified through HIL
experimentation on the IEEE 14-bus system.
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