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Abstract—In this paper, we consider the problem of optimiz-
ing voltage set points and switching status of components in
direct current power networks subject to physical and security
constraints. The problem is cast as a mixed-integer nonlinear
programming with two sources of computational complexity:
i) Non-convex power flow equations, and ii) The presence of
binary variables accounting for the on/off status of network
components. A strengthened second-order cone programming
(SOCP) relaxation is developed to tackle the non-convexity
of power flow equations, and a branch-and-bound search is
employed for determining optimal network configurations. The
efficacy of the proposed method in optimizing the operation while
mitigating contingencies is experimentally validated in a real-time
hardware-in-the-loop environment using IEEE benchmark data.

Index Terms—DC network, economic dispatch, load shedding,
network reconfiguration, optimal power flow.

I. INTRODUCTION

D IRECT current (DC) networks are becoming popular
substitutes for alternative current (AC) networks given

the prevalence of DC-native sources, loads, and storage units,
preference in mission/safety-critical applications, and to avoid
challenges inherent in AC networks. DC networks are better
suited to accommodate various renewable or nonconventional
distributed sources that are DC in nature, such as photo-
voltaics, and modern loads, such as electronic or lighting.
Recent trends show an increasing portion of electrical loads in
buildings are DC [1], [2]. Certain loads that were traditionally
classified as AC loads, such as electric machines, can now be
treated as DC loads since they are mostly run with electric
drive systems with DC terminals [3]. DC networks enjoy a
simpler control mechanism, and avoid challenges that afflict
AC networks, e.g., frequency synchronization, reactive power
flow, or power quality issues [4], [5]. By eliminating redundant
conversion stages and simplifying the distribution circuitry, by
some estimates [6], moving power distribution networks to a
DC platform could help increase their efficiency by about 28%
and reduce their installation cost by 15%. Given their improved
efficiency, DC systems are emerging in power distribution
platforms of electrified transportation fleets, including electric
cars, shipboard power systems, and more electric aircrafts
[7], [8]. Given their improved availability and reliability, DC
networks have long been used in powering data centers [9].
Overall, low-voltage DC (LVDC) [10], medium-voltage DC
(MVDC) [11], and high-voltage DC (HVDC) [12] systems
have appeared as reliable and efficient power distribution/-
transmission mediums.
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This paper revisits the classic optimal transmission switch-
ing with nonlinear power flow in transmission-level AC sys-
tems for converter-dominated DC distribution networks with
the intent of improving dispatch cost [13]. We formulate an in-
tegrated contingency-constrained optimal power flow problem
(OPF) in the presence of binary variables associated with line,
converter and load statuses. The loads are categorized as vital
and non-vital. The proposed optimization framework ensures
the immunity of vital loads to contingencies and prioritizes
non-vital ones while minimizes generational cost under normal
operation.

In AC networks, the topology can be optimally reconfig-
ured to alleviate line overloads, address voltage violations,
minimize transmission losses, protect network from abnormal
operations, or schedule maintenance [14]. Addressing both
economical and security requirements mends the optimal net-
work topology with the economic dispatch problem [14], [15].
This has led to a mixed-integer linear programming (MILP)
problem for AC transmission systems [13], [16]. Analogously,
OPF in DC distribution networks are formulated as linear,
nonlinear, or heuristic optimization problems with different
objective functions (e.g., loss [17], [18], cost [19], or resiliency
[20]). Given that DC networks are commonly used in mission-
critical applications, decisions about proper load-shedding as
well as switching in/out power electronic devices that interface
sources are indispensable to the secure operation of these
DC networks. A network reconfiguration framework, wherein
binary variables represent the state of network components, is
limited in the literature [21], [22]. Reconfiguring DC networks
has appeared in the context of load-shedding problem in
shipboards [23] and electric aircrafts [24].

Solving an OPF or network reconfiguration problem ap-
proximated by linear equations lacks in fidelity as physical
laws are not properly respected [25], [26]. To address this
drawback, various convex relaxations have transformed non-
linear power flow constraints into convex surrogates while at-
tempting to preserve equivalency to the original problem [27]–
[29]. Convex relaxation techniques, including semi-definite
programming (SDP) and second-order cone programming
(SOCP), reformulate the problem in a high-dimensional space
and relax non-convex algebraic relations to convex conic
inequalities. The SDP and SOCP relaxations and their vari-
ations successfully find the globally optimal solutions for
the OPF problem in AC systems [28], [30], [31]. Recently,
mixed-integer cone programming techniques have solved AC
optimal transmission switching problems in [25] and [32].
Similar approaches are extended to DC networks without
regard to power injection limits, thermal limits of lines, bus
voltage limits, and the presence of power converters and
their local controllers [18], [19], [26], [33]. In this paper, we
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strengthen the SOCP relaxation of the security-constrained
OPF problem on DC networks by introducing linear valid
inequalities. Moreover, we offer a mixed-integer second-order
cone program (MISOCP) formulation for the optimal network
reconfiguration problem to optimize voltage set points of local
converter controllers as well as the operational statuses of
power electronics converters, loads, and lines. In summary,
the salient contributions of this paper are listed as follow:

• Linear valid inequalities are introduced to strengthen the
SOCP relaxation of the OPF problem for a DC network.

• OPF formulation is extended to a network reconfigura-
tion problem by incorporating the binary variables that
represent the state of network components (line, power
electronics converter, load).

• The resulting MISOCP formulation is further extended
to contingency-constrained network reconfiguration prob-
lem to provide corrective actions in response to contin-
gency scenarios.

• The problem formulation is designed to solve optimal: (i)
network topology, (ii) economic dispatch, and (iii) load-
shedding problems, separately.

• A penalty term is utilized to address instances when the
contingency-constrained network reconfiguration prob-
lem fails to produce a feasible solution.

• The proposed OPF, optimal network topology, economic
dispatch, and contingency-constrained network reconfig-
uration are experimentally validated through real-time
studies on HIL systems.

The remainder of the paper is organized as follows. Section
II gives the preliminaries. Section III defines the OPF formu-
lation for DC networks as nonlinear programming problems,
and provides their convex relaxations through SOCP relax-
ation. Several valid inequalities are offered to improve the
SOCP relaxation performance of the OPF problem. Section
IV integrates the statuses of distribution lines and devices
into the OPF problem, and provides its MISOCP-relaxed
formulation. Section V formulates a contingency-constrained
network reconfiguration problem with a devised penalty term
into objective to recover a near-global solution. In Section VI,
resulting SOCP-relaxed OPF and MISOCP-relaxed optimal
network reconfiguration problems are verified for a modified
converter-augmented IEEE 14-bus network in a hardware-in-
the-loop (HIL) environment. Section VII concludes the paper.

II. NOTATIONS AND TERMINOLOGIES

A. Matrix Algebra Notations

The matrices and vectors are represented by bold, uppercase
and lowercase letters (e.g., X, x), respectively. 1 refers to
vector whose all elements are 1. The symbols R and Sn denote
the sets of real numbers and n × n symmetric matrices, re-
spectively. The matrix entries are denoted by indices (i, j). The
superscript (·)> denotes the transpose operator. | · | represents
both the absolute value of a vector/scalar or the cardinality
of a set.

√
· refers to the square root of a given scalar/vector.

[·] creates a matrix whose diagonal elements obtained from
a given vector. diag{·} composes a vertical vector from the

diagonal elements of a given matrix. The notation W � 0
means that W is a positive semidefinite matrix.

B. Power Network Terminologies

Consider a DC distribution networks in an islanded mode,
with resistive lines, and power electronics devices (e.g.,
DC/DC converters) to interface energy sources to the dis-
tribution network. Figure 1 shows a portion of a DC dis-
tribution network. It can be modeled as a directed graph
H = (N ,L), with N and L as the sets of buses and lines,
respectively. Network buses are connected via distribution
lines, and each bus can accommodate an arbitrary number
of power electronics converters, resistive loads, and constant
power loads. Let S denote the set of contingency scenarios.
Each contingency scenario represents the possible outage of
at least one network component such as a power electronics
converter and/or a distribution line. Herein, 0 ∈ S accounts
for the base case scenario where there is no contingency (i.e.,
normal operation). For each scenario s ∈ S,
• Buses: Define vs ∈ R|N | as the vector of nodal voltages,

whose i-th element is the voltage at bus i ∈ N .
• Lines: Define the pair ~L, ~L ∈ {0, 1}|L|×|N| as the from

and to line incidence matrices, respectively. For every
l ∈ L and i ∈ N , ~Lli = 1 if and only if the line l
starts at bus i, and ~Lli = 1 if and only if the line l
ends at bus i. Define ~g, ~g ∈ R|L| as the from and to
line conductance vectors, respectively. Notice that in the
absence of interlinking converters within the network,
we have ~g = −~g. Moreover, denote the from and to
line power flows by ~fs, ~fs ∈ R|L|, respectively, and let
f~

~

max
s ∈ (R ∪ {∞})|L| represent the vector of instructed

power flow limits for the scenario s ∈ S. Finally, define
x~

~

s ∈ {0, 1}|L| as the binary vector representing the on/off
status of lines. The vectors x~

~

min
s ,x~

~

max
s ∈ {0, 1}|L| are

used to enforce apriori information about x~

~

s, i.e.,

x~

~

min
s,l =x~

~

max
s,l =0, if line l∈L is known to be disconnected,

x~

~

min
s,l =x~

~

max
s,l =1, if line l∈L is known to be connected,

x~

~

min
s,l =0, x~

~

max
s,l =1, otherwise.

• Resistive loads: Define R as the set of resistive loads
and let g,fs,fmin

s ,fmax
s ∈ R|R| represent the vectors of

conductance values, power consumptions, as well as the
minimum and maximum power allowed for the resistive
loads. Define also L ∈ {0, 1}|R|×|N| as the incidence
matrix for the resistive loads. Additionally, the vector
xs ∈ {0, 1}|R| represents the on/off status of resistive
loads while apriori knowledge of xs elements are imposed
using given vectors xmin

s ,xmax
s ∈ {0, 1}|R|, such that:

xmin
s,r =xmax

s,r =0, if load r∈R is known to be disconnected,

xmin
s,r =xmax

s,r =1, if load r∈R is vital or cannot be shed,

xmin
s,r =0, xmax

s,r =1, otherwise.

Finally, the vector δs ∈ R|R| is defined as the vector
of resistive load-shedding cost in such a way that δ>s xs

enforces the total cost incurred by dropping resistive loads
in scenario s.

• Constant loads and Converters: Define C , Cload ∪
Csource, where Cload and Csource represent the sets of con-
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stant loads and power converters, respectively. To stream-
line the formulations, we treat the two different classes
of components Cload and Csource similarly throughout the
paper. This is because every constant load can be modeled
as a negative source whose upper and lower bounds are
equal or very close. Notice that the label constant means
that the amount of power consumption is not a function
of nodal voltage and our formulation allows pmin

c 6= pmax
c

for members of Cload. Let C ∈ {0, 1}|C|×|N| be the
incidence matrix for the union of constant loads and
power converters. Cci = 1 for any c ∈ C and i ∈ N ,
if and only if the load or converter c is located at the bus
i. Define ps,pmin

s ,pmax
s ∈ R|C|, as the vectors of power

injections as well as the minimum and maximum injec-
tions allowed, respectively. Define vmin

s ,vmax
s ∈ R|C|

as the minimum and maximum voltages allowed for
constant loads and converters. Additionally, the vector
zs ∈ {0, 1}|C| represents the on/off status of the members
of C while apriori knowledge of z elements are imposed
using given vectors zmin

s , zmax
s ∈ {0, 1}|C|, such that:

zmin
s,c =zmax

s,c =0, if c∈C is known to be disconnected,

zmin
s,c =zmax

s,c =1, if c∈C represents a vital load or if it
is converter/load that cannot be shed,

zmin
s,c =0, zmax

s,c =1, otherwise.

Finally, by neglecting power converter losses [34], the
cost/profit of every component c ∈ C under a scenario
s ∈ S can be approximated with a quadratic function
γs,c p

2
s,c + βs,c ps,c + αs,c zs,c amounting to the total cost∑

s∈S
p>s [γs]ps + β>s ps +α>s zs + δ>s xs, (1)

where γs,βs,αs ∈ R|C| are the quadratic, linear, and
fixed cost coefficient vectors. Notice that if c ∈ C is a
vital load, then we can simply enforce its connectivity
by setting zmin

s,c =zmax
s,c =1 for all s ∈ S . Additionally, if

c is a non-vital load, we can incorporate the coefficients
γs,c = βs,c = 0 and αs,c = −ηs × φc, where ηs is the
probability of contingency s and φc is the cost associated
with dropping c.

For ease of notation, the 0 subscript, corresponding to
the base case parameters, is dropped for single scenario
problems. The security-constrained optimal network reconfig-
uration problem aims to minimize the generational cost and
derisk the operation of a converter-dominated DC distribution
network by determining switching actions (e.g., statuses of
the power electronic converters, line switching, and/or load-
shedding) for normal operation (i.e., base case) and in response
to contingency scenarios (i.e., outages). In the following
section, we first formulate the classical OPF problem for a
fixed topology and, then, extend the formulation to general
security-constrained network reconfiguration problems.

III. OPTIMAL POWER FLOW FOR DC NETWORKS

Physical laws, Ohm’s law and Kirchhoff’s current law,
underpin the power flow formulation for a DC network.
The expressions of these physical laws for the two-bus DC
network, shown in Figure 1, are

~ıl1 = (vi1 − vi2)~gl1x~

~

l1 ∀l1 = (i1, i2) ∈ L, (2a)

Voltage 
Control

Voltage 
Control

MISOCP Solver

Figure 1. A schematic of a DC distribution network with two buses. The
network is endowed with switching devices to decide z that shed constant
loads or switch in/out power electronics converters that interface sources,
x that shed resistive loads, and x~

~

that switch lines. The optimizer takes as
an inputs variables network parameters (e.g., ~gl1 , ~gl1 , f~

~

max
l1

, vmax
i1

, vmax
i2

,
pmax
c1

, pmax
c4

, vmin
i1

, vmin
i2

, pmin
c1

, pmin
c4

, γc1 , βc1 , αc1 , γc4 , βc4 , αc4 , δr1 ),
load demands (e.g., fr1 , pc2 , pc3 ), and possible contingency scenarios (e.g.,
x~

~

s,l1 , zs,c1 , zs,c4 ), and updates the control variables including the voltage
set-points of power electronics converters (e.g., vi1 , vi2 ) and the switching
status of loads (e.g., xr1 , zc2 , zc3 ), lines (e.g., x~

~

l1 ), and power electronics
converters (e.g., zc1 , zc4 ).

ii1 =
∑
l1∈L

~ıl1x~

~

l1 ∀l1 = (i1, i2) ∈ L. (2b)

Equation (2a) shows the Ohm’s law applied to the two-bus
network, while (2b) states the Kirchhoff’s current law for bus
i1. Similarly, (2a)–(2b) are used to obtain power flow and
power balance equations:

~fl1 = vi1(vi1 − vi2)~gl1x~

~

l1 ∀l1 = (i1, i2) ∈ L, (3a)
~f l1 = vi2(vi2 − vi1) ~gl1x~

~
l1 ∀l1 = (i1, i2) ∈ L, (3b)

(~fl1 + ~f l1)x~

~

l1 + fr1xr1 + pc2zc2 + pc3zc3 = pc1zc1 + pc4zc4

(c1, c4) ∈ Csource, (c2, c3) ∈ Cload, r1 ∈ R,
x~

~

l1 , xr1 , zc1 , zc2 , zc1 , zc2 ∈ {0, 1}. (3c)

Equations (3a)–(3b) and (3c) derive the power flow and
the power balance for two-bus DC network based on
the Ohm’s and Kirchhoff’s laws, respectively. Herein, we
assume that the network components are all connected (e.g.,
x~

~

l1 = xr1 = zc1 = zc2 = zc3 = zc4 = 1 ) in order to
formulate the classic OPF problem with scalar notations.
Henceforth, vector/matrix notation will be used to provide
a generic formulation. Moreover, the nonlinear terms in
(3a)–(3b) will be replaced with auxiliary variables accounting
for ui1 = vi1vi1 and wl1 = vi1vi2 , where (i1, i2...i|N |) ∈ N
and (l1, l2...l|L|) ∈ L.

In light of all these facts, the single scenario OPF problem
can be formulated as

minimize p>[γ]p+ β>p+α>1|P| (4a)

subject to L>f + ~L> ~f + ~L> ~f = C>p (4b)

f = [g ]Lu (4c)
~f = [~g ](~Lu−w) (4d)
~f = [ ~g ]( ~Lu−w) (4e)

fmin ≤ f ≤ fmax (4f)

| ~f | ≤ f~

~

max (4g)

| ~f | ≤ f~

~

max (4h)



4

[vmin]vmin ≤ Cu ≤ [vmax]vmax (4i)

pmin ≤ p ≤ pmax (4j)

w =

√
diag{~Luu> ~L>} (4k)

variables f ∈ R|R|; ~f , ~f ∈R|L|; p ∈R|C|

u ∈ R|N|; w ∈ R|L|

where the auxiliary variable w ∈ R|L| is defined in (4k), and
u ∈ R|N | accounts for the square of nodal voltages. These
new variables are introduced to streamline convex relaxation
of the problem (4).

The equation (4b) enforces the nodal power balances
throughout the network while the equations (4c)–(4e) impose
resistive load consumption and quadratic line flows. Notice
that (4d)–(4e) are derived based on the physical laws as
shown in (3a)–(3b). The inequality (4f) imposes lower and
upper power limits for resistive load. The inequalities (4g)–
(4h) restrict the distribution line power flow capacity in both
direction. The inequalities (4i) and (4j) enforce voltage and
power limits on both converters and constant loads. Thanks to
the auxiliary variables u, and w, the nonlinear constraint (4k)
is the only sources of nonconvexity in the above formulation.

In order to arrive to a SOCP relaxation of the problem (4a)-
(4k), it suffices to substitute the non-convex constraint (4k)
with the following convex inequality:

|w | ≤
√

diag{~Luu> ~L>}, (5)

It can be easily observed that the inequality (5) is equivalent
to the following conic constraints:[

ui wl

wl uj

]
� 0, ∀l = (i, j) ∈ L, (6)

where ui = vivi, uj = vjvj , and wl = vivj . Notice that
the vector form of wl in (4k) is equivalent to wl =

√
uiuj

for every l = (i, j) ∈ L. Similar to (4k), (5) can also
be shown as |wl| ≤

√
uiuj for every l = (i, j) ∈ L.

Equation (6) leads to the commonly-used SOCP relaxation
of an OPF problem for DC networks [26]. In what follows,
we introduce a strengthened second-order cone programming
(SOCP) relaxation to convexify these constraints.

Valid inequalities are used in various problems to improve
computational time [35], reduce the number of branch-and-
bound nodes required to be searched [36], [37], and strength-
ening linear programming (LP) [38] and convex relaxation
[39], [40]. The next theorem offers valid inequalities in order
to improve the quality of SOCP relaxation and to facilitate
the task of branch-and-bound solvers in the presence of binary
variables.

Theorem 1. Consider an arbitrary feasible point
(u,w,p,f , ~f , ~f) for the OPF problem (4a)–(4k). The
following linear inequalities are valid:

w ≥ [ ν̄1 ] ~Lu+ [ ν̄2 ] ~Lu+ ν̄3 (7a)

w ≥ [ν 1] ~Lu+ [ν 2] ~Lu+ ν 3 (7b)

where

ν̄1, [~Lv̄ + ~Lv ]−1 ~Lv̄ ν 1, [~Lv̄ + ~Lv ]−1 ~Lv

ν̄2, [ ~Lv̄ + ~Lv ]−1~Lv̄ ν 2, [ ~Lv̄ + ~Lv ]−1~Lv

ν̄3, [1− ν̄1 − ν̄2][~Lv̄] ~Lv̄ ν 3, [1− ν 1 − ν 2][~Lv ] ~Lv

and for every i ∈ N the i-th entry of v̄ and v are given as:

v i, min{vi |Cv ≥ vmin}, v̄i, max{vi |Cv ≤ vmax}. (8)

Remark 1. Assume that we want to impose wl =
√
uiuj

for every l = (i, j) ∈ L. If SOCP relaxation is adopted, it
will become |wl| ≤

√
uiuj . Observe that for any solution

(ǔi, ǔj) ∈ R|N |, both triplets ȟ1 = (ǔi, ǔj ,
√
ǔiǔj) and

ȟ2 = (ǔi, ǔj ,−
√
ǔiǔj) satisfy |wl| ≤

√
uiuj . If the objective

function is well-behaved, SOCP relaxation concludes with ȟ1.
On the other hand, in the absence of an objective function
(e.g., contingency scenarios), SOCP relaxation may end up
with ȟ2 that significantly violates the feasibility criterion
max(|wl−

√
uiuj | ' 0). The linear valid inequalities in (7a)–

(7b) prevent the case of wl = −√uiuj . These linear valid
inequalities can be simply shown for every l = (i, j) ∈ L as

−wl ≤
vmin
j

vmax
i + vmin

i

ui +
vmin
i

vmax
j + vmin

j

uj

+

(
−

vmin
j

vmax
i + vmin

i

− vmin
i

vmax
j + vmin

j

+ 1

)
vmin
i vmin

j (9a)

−wl ≤
vmax
j

vmax
i + vmin

i

ui +
vmax
i

vmax
j + vmin

j

uj

+

(
−

vmax
j

vmax
i + vmin

i

− vmax
i

vmax
j + vmin

j

+ 1

)
vmax
i vmax

j (9b)

Proof. Consider the convex function h : R2 → R as h(a, b) ,
−
√
ab. Moreover, define

κ̄1 , ~L [ū− u]−1(u− u) κ1 , ~L [ū− u]−1(u− u)

κ̄2 , ~L [ū− u]−1(u− u) κ2 , ~L [ū− u]−1(u− u)

κ̄3 , 1− κ̄1 − κ̄2 κ3 , 1− κ1 − κ2

where ū , [v̄]v̄ and u , [v ]v . It can be easily verified that

~Lu = [κ̄1]~Lu+[κ̄2]~Lū+[κ̄3]~Lū=[κ1] ~Lu+[κ2] ~Lū+[κ3] ~Lu

~Lu = [κ̄1]~Lū+[κ̄2]~Lu+[κ̄3]~Lū=[κ1] ~Lū+[κ2] ~Lu+[κ3] ~Lu

Hence, according to Jensen’s inequality, we have

−w = h
(
~Lu, ~Lu

)
≤ [κ̄1]h

(
~Lu, ~Lū

)
+

[κ̄2]h
(
~Lū, ~Lu

)
+ [κ̄3]h

(
~Lū, ~Lū

)
−w = h

(
~Lu, ~Lu

)
≤ [κ1]h

(
~Lu, ~Lū

)
+

[κ2]h
(
~Lū, ~Lu

)
+ [κ3]h

(
~Lu, ~Lu

)
that respectively, conclude the inequalities (7a) and (7b).

The next example shows the effect of valid inequalities (7a)
and (7b) on the relaxed feasible region of a two-bus network.

Example 1. Consider a simple 2-bus network with one con-
verter at bus 2 and a load at bus 1. Assume that the line
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(a) The original nonconvex fea-
sible set of OPF problem (4).

(b) Weak SOCP relaxation re-
sulted from (5) only.

(7a)

(7b)

(c) Convex hull of the original
set resulted from (7a)-(7b).

Figure 2. Nonconvex and relaxed feasible regions for optimal power flow on a 2-bus DC network.

Table I
PARAMETERS OF THE 2-BUS NETWORK EXAMPLE

Bus vmin
c vmax

c pmin
c pmax

c γc βc αc

1 0.5 0.75 -0.3 0 0 0 0
2 1.0 1.4 0.5 1 1 0.4 0.2

conductance value is equal to 1. The remaining parameters
are given in Table I. For this simple network, the commonly
used SOCP relaxation is inexact and fails to produce a
feasible point for the original non-convex problem (4). The
original nonconvex feasible set and its relaxation resulted
form substituting (4k) with (5) are visualized in Figures 2(a)-
(b), respectively. Figure 2(c) shows the effect of linear valid
inequalities (7a)-(7b), resulting in the precise convex-hull of
the original nonconvex set. Imposing inequalities (7a)-(7b)
makes the SOCP relaxation exact for which (6) holds.

IV. INTEGRATED OPF AND NETWORK RECONFIGURATION

This section is concerned with the integrated optimization
of power flows as well as the lines and device statuses. To this
end, we incorporate binary variables x ∈ R|R|, x~

~

∈ R|L|, and
z ∈ R|C|, respectively, representing the status of repressive
loads, distribution lines, and the collection of converters and
constant loads. Employing the well-known big-M method
leads to the following formulation of the problem:

minimize γ>o+ β>p+α>z + δ>x (10a)

subject to L>f + ~L> ~f + ~L> ~f = C>p (10b)

|f − [g ]Lu| ≤M(1− x) (10c)

| ~f − [~g ](~Lu−w)| ≤M(1− x~

~

) (10d)

| ~f − [ ~g ]( ~Lu−w)| ≤M(1− x~

~

) (10e)

[fmin]x ≤ f ≤ [fmax]x (10f)

| ~f | ≤ [f~

~

max]x~

~

(10g)

| ~f | ≤ [f~

~

max]x~

~

(10h)

xmin ≤ x ≤ xmax (10i)

x~

~

min ≤ x~

~

≤ x~

~

max (10j)

Cu ≤ [vmax]vmax + M(1− z) (10k)

Cu ≥ [vmin ]vmin −M(1− z) (10l)

[pmin]z ≤ p ≤ [pmax]z (10m)

zmin≤ z≤ zmax (10n)

w =

√
diag{~Luu> ~L>} (10o)

p =
√
o (10p)

variables f ∈ R|R|; ~f , ~f ∈R|L|; p,o ∈R|C|

x∈{0, 1}|R|; x~

~

∈{0, 1}|L|; z∈{0, 1}|C|

u ∈ R|N|; w ∈ R|L|

where M > 0 is a sufficiently large number. Constraints
(10i), (10j), and (10n) impose apriori knowledge of the binary
variables. Observe that if M is large, then any constraints
among (10c), (10d), (10e), (10k), and (10l) that corresponds
to a switched-off component is lifted.

Similar to the case of OPF problem (4), this network
reconfiguration problem can be readily relaxed to a mixed-
integer SOCP by transforming the nonconvex constraints (10o)
– (10p) to convex inequalities:

|w | ≤
√

diag{~Luu> ~L>}, (11a)

|p | ≤
√

diag{oz>}, (11b)

where the inequality (11b) is equivalent to:[
oc pc
pc zc

]
� 0, ∀c ∈ C. (12)

Inequality (12) is known as perspective relaxation that helps
generating tight approximations to mixed-integer nonlinear
programming (MINLP) problems [41]. Herein, the nonlinear
inequality (10p) is cast as a second-order cone constraint that
greatly improved the solvability (10) [42].

Moreover, the proposed valid inequalities (7a) and (7b)
can be imposed in addition to (11a) and (11b) to boost the
performance of branch-and-bound search algorithm.

V. CONTINGENCY-CONSTRAINED NETWORK
RECONFIGURATION

The network reconfiguration problem (10), as it stands,
considers network assets as static components. It is unlikely
that a single configuration be immune to all failure scenarios.
Networks with resiliency requirements must be equipped with
an optimization framework which produces timely recourse
actions in response to a variety of contingencies to sustain
minimal service under all circumstances. Herein, sustaining
minimal service means providing not only an impeccable and
efficient supply/demand balance under normal operation, but
also corrective actions in response to contingency scenarios.
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The permissible voltage/power variation in transition from
pre to post-contingency operations can be bounded with con-
tingency constraints (i.e., ramp-rates). Such ramp constraints
could correspond to those loads whose voltage variations
should tightly regulated as well as converters with limited con-
troller bandwidth. In light of all these facts, the contingency-
constrained network reconfiguration problem involving binary
switching actions can be cast as:

minimize
∑
s∈S

γ>s os+β>s ps+α>s zs+δ>s xs+ε| ~fs+ ~fs| (13a)

subject to L>fs + ~L> ~fs + ~L> ~fs = C>ps ∀s∈S (13b)

|fs − [~g ]Lus|≤M(1− xs) ∀s∈S (13c)

| ~fs − [~g ](~Lus −ws)|≤M(1− x~

~

s) ∀s∈S (13d)

| ~fs − [ ~g ]( ~Lus −ws)|≤M(1− x~

~

s) ∀s∈S (13e)

[fmin
s ]xs ≤ fs ≤ [fmax

s ]xs ∀s∈S (13f)

| ~fs| ≤ [f~

~

max
s ]x~

~

s ∀s∈S (13g)

| ~fs| ≤ [f~

~

max
s ]x~

~

s ∀s∈S (13h)

xmin
s ≤ xs ≤ xmax

s ∀s∈S (13i)

x~

~

min
s ≤ x~

~

s ≤ x~

~

max
s ∀s∈S (13j)

Cus ≤ [vmax
s ]vmax

s + M(1− zs) ∀s∈S (13k)

Cus ≥ [vmin
s ]vmin

s −M(1− zs) ∀s∈S (13l)

[pmin
s ]zs ≤ ps ≤ [pmax

s ]zs ∀s∈S (13m)

zmin
s ≤ zs≤ zmax

s ∀s∈S (13n)

C(us+u0)− [vramp
s ]vramp

s −M(2− z0 − zs) ≤
2
√

diag{Cu0u>sC>} ∀s∈S\{0} (13o)
ps−p0≤ [q̄ramp

s −p̄ramp
s ]z0+p̄ramp

s ∀s∈S\{0} (13p)
ps−p0≥ [pramp

s −qramp
s ]zs−pramp

s ∀s∈S\{0} (13q)

|xs − x0|≤ xshift
s ∀s∈S\{0} (13r)

|x~

~

s − x~

~

0|≤ x~

~

shift
s ∀s∈S\{0} (13s)

|zs − z0 |≤ zshift
s ∀s∈S\{0} (13t)

ws =

√
diag{~Lusu>s ~L>} ∀s∈S (13u)

ps =
√
os ∀s∈S (13v)

variables fs ∈ R|R|; ~fs, ~fs ∈R|L|; ps,os ∈R|C|

xs∈{0, 1}|R|; x~

~

s∈{0, 1}|L|; zs∈{0, 1}|C|

us ∈ R|N|; ws ∈ R|L| ∀s∈S

The additional constraints (13o), (13p), (13q), (13r), (13s),
and (13t) enforce the response time of power electronics
converters in terms of both the output voltage and the output
power, sensitive load provisions, and switching capabilities.
vramp
s ∈ (R ∪ {∞})|C| enforces the maximum voltage varia-

tions for members of C that are connected in both the base
case and in the contingency case s. If for a component c ∈ C,
z0,c = zs,c = 1, the second-order conic inequality (13o)
enforces:(√
u0,i −

√
us,i
)2 ≤ (vramp

s,c )2 ⇒ |v0,i − vs,i| ≤ vramp
s,c , (14)

Scenario 0 : s = 0 Scenario 1 : s = 1 Scenario 2 : s = 2

Figure 3. Example of contingency scenarios for a DC power network.
Upper row represents changes in the converters and loads. Bottom row shows
changes in the network topology. Scenario 0 represents the base case with
no contingency. In Scenario 1, a constant power load is shed in response
to the outage of one converter and one line. Scenario S represents resistive
load-shedding in response to the outage of one converter and two lines.

where i ∈ N represents the bus number for c. vramp
s,c

should be specified based on the type of source or load.
For every s ∈ S \ {0}, constants q̄ramp

s , p̄ramp
s , qramp

s , pramp
s

∈ (R ∪ {∞})|C| set maximum permissible power variations
in response to contingency s. Herein, p̄ramp

s and pramp
s are

the vectors of startup and shutdown power-ramp constants,
respectively. q̄ramp

s and qramp
s are the vectors of upper and

lower power variation constants, respectively. p̄ramp
s,c , pramp

s,c ,
q̄ramp
s,c , and qramp

s,c are specified according to the converter
inertia characteristics of the power converter. Corresponding
mathematical notation are summarized as

z0 = 0 ∧ zs = 1 ⇒ ps,c ≤ p̄ramp
s,c , (15a)

z0 = 1 ∧ zs = 0 ⇒ p0,c ≤ pramp
s,c , (15b)

z0 = 1 ∧ zs = 1 ⇒ −qramp
s,c ≤ ps,c − p0,c ≤ q̄ ramp

s,c . (15c)

Observe that if a converter is immediately switched into the
network, the constraint (13p) reduces to (15a) as p0,c = 0.
Similarly, if a converter is immediately removed, the con-
straints (13q) reduces to (15b) as ps,c = 0. Alternatively, if a
converter remains active, the constraints (13p)–(13q) reduce to
(15c). The remaining contingency constants xshift

s ∈ {0, 1}|R|,
x~

~

shift
s ∈ {0, 1}|L|, and zshifts ∈ {0, 1}|C| in constraints (13r)–

(13t) restrict certain status changes in resistive loads, lines,
constant loads, and converters, respectively, in case when
contingency s ∈ S \{0} requires immediate response. Similar
to the previous sections, the contingency-constrained problem
can be transformed to a mixed-integer SOCP by relaxing the
nonconvex constraints (13u) – (13v) to:

|ws | ≤
√

diag{~Lusu>s ~L>}, (16a)

|ps | ≤
√

diag{osz>s }. (16b)

For challenging instances of contingency-constrained network
reconfiguration, the proposed convex relaxation may be inex-
act and fail to produce feasible points. Motivated by [30], we
incorporate the following penalty term into the objective in
order to recover near-globally optimal feasible points:

ε×
∑
s∈S
| ~fs + ~fs|. (17)
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The additional term (17) in objective function (13a) represents
the total power loss throughout the network with ε that stands
as a penalty coefficient.

In addition to optimizing the operational cost, (4), and the
network configuration, (10), the problem (13u) – (13v) offers
line/converter switching on/off-in/out as well as load-shedding
recourse actions to mitigate contingencies. The main goal of
(13) is that network configuration becomes resilient to a certain
range of contingency scenarios by making decisions over
binary variables, i.e., xs ∈{0, 1}|R|, x~

~

s ∈{0, 1}|L|, andzs ∈
{0, 1}|C|. The binary decisions are used to find the corrective
action (e.g., resistive or constant non-vital load-shedding) in
response to contingencies (e.g., failure converter and/or lines).

In the next section, we will feed this problem into general-
purpose mixed-integer solvers to obtain secure and cost-
efficient solutions.

VI. EXPERIMENTAL VERIFICATION AND VALIDATION

A. System Setup

Due to safety concerns, installation cost, space require-
ment, and time constraints, real-time HIL systems are com-
mon for rapid prototyping and testing with a high fidelity
representation of a physical system [43], [44]. Figure 4 shows
DC network optimal reconfiguration testbed on a HIL system.
The IEEE 14-bus benchmark [45] is transformed into a DC
benchmark system by replacing AC generators with DC-DC
buck converters, making distribution lines resistive, and incor-
porating switches for all of the lines, loads, and converters,
as shown in Figure 5. This network is emulated in a HIL
environment with the following characteristics,

Real-Time 
Hardware Emulation

Optimization 

Typhoon HIL

XIL-API Port 

dSPACE 
MicroLabBox

Voltage
Control DC/DC-+

Controller 
Implementation

Figure 4. DC network optimal reconfiguration testbed on a HIL system
consisting of real-time hardware emulation (Typhoon HIL), controller im-
plementation (dSPACE), and XIL-API port for data transfer.

• A dSPACE DS 1202 MicroLabBox (MLBX) is used to
implement local controllers for each individual converter.

• A Typhoon HIL 604 unit emulates the entire network
including power converters in real time.

• A 16-core Xeon PC with 256 GB RAM is used to deter-
mine optimal operating points and switching decisions.

• A XIL-API port communicates optimized voltage val-
ues and the on/off statuses of switching devices to the
dSPACE MLBX and Typhoon HIL 604, respectively.

The resulting SOCP and MISOCP problems are solved in
CVX v2.1 environment [46] using the conic mixed-integer
solver GUROBI v8.0.1 [47].

The converter, constant load and resistive load character-
istics are given in Tables II-III, respectively. Under normal
operation (base case), all of the loads are forced to be
connected. However, we allow non-vital constant and resistive
load disconnection at certain cost specified by Tables II-III.
Voltage and power ramp limits do not allow changes beyond
7.5V and 15kW, respectively, in transition between scenarios,
i.e., p̄ramp

s,c = pramp
s,c = +∞, q̄ramp

s,c = qramp
s,c = 15kW, and

vramp
s,c = 7.5V for every c ∈ Csource and s ∈ S \ {0}. Addi-

tionally, p̄ramp
s,c = q̄ramp

s,c = pramp
s,c = qramp

s,c = v̄ramp
s,c = ∞,

for every c ∈ Cload and s ∈ S \ {0}. Lastly, response
times are considered long enough to allow changes in network
configuration in transition from base cases to contingencies,
i.e., xshift

s = 1, x~

~

shift
s = 1 and zshifts = 1, for all s ∈ S \ {0}.

Table II
SOURCE AND CONSTANT LOAD CHARACTERISTICS

Bus vmin
s,c (V) vmax

s,c (V) pmin
s,c (kW) pmax

s,c (kW) γ0,c β0,c α0,c γs,c βs,c αs,c

1 370 390 0 150 0.4 20 1000 0 0 0
2 361 399 0 50 0.1 20 5000 0 0 0
3 361 399 0 100 0.01 10 1000 0 0 0
6 361 399 0 100 0.01 10 1000 0 0 0
8 361 399 0 50 0.01 20 5000 0 0 0
1 370 390 50 50 0 0 0 0 0 -1
3* 361 399 45 45 0 0 0 0 0 -1
6 361 399 40 40 0 0 0 0 0 -1
* Vital loads requiring uninterrupted post-contingency service.

Note that in the base case, all of the loads are forced
to remain connected, i.e., xmin

0 = xmax
0 = 1 and zmin

0,c =
zmax
0,c = 1 for every c ∈ Cload. The line rating vector is

set to f~

~

max = 35kW for all of the experiments. Moreover,
the big-M constant used in (10) and (13) is selected as
M = 500. It is significant to note that penalty coefficient
ε in (13a) is set to 0 unless otherwise stated. Throughout
the experiments, the solution is considered feasible when the
maximum nodal mismatch satisfies the criterion specified as
max(|wl −

√
uiuj | ≤ 10−6) for every l = (i, j) ∈ L.

1 2 3

45

6 7

8

9 10

14131211

0.028 Ω 0.094 Ω

0.
10

5 
Ω

Energy
Source

Bus 3

0.082 Ω

0.
08

3Ω

0.081 Ω

0.020 Ω

0.
09

9Ω

0.263 Ω

0.
11

9 
Ω

0.
09

4 
Ω

0.121 Ω0.062 Ω

0.083 Ω

0.052 Ω

0.128 Ω

0.095 Ω 0.165 Ω

0.091 Ω

Load

380 V

0.040 Ω

Figure 5. Modified IEEE standard 14-bus system augmented with 5 converters
at buses 1, 2, 3, 6, and 8 (as shown by ) as well as 3 constant and 8 resistive
loads given in Table II and Table III.
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Table III
RESISTIVE LOAD CHARACTERISTICS

Bus g−1s,r (Ω) fmin
s,r (kW) fmax

s,r (kW) δ0,r δs,r
1* 9.63 15.80 14.22 0 -1
4 2.83 48.35 46.03 0 -1
5∗ 2.72 55.83 50.25 0 -1
9∗ 3.21 47.40 42.66 0 -1
10 14.44 9.48 9.03 0 -1
11∗ 13.13 11.59 10.43 0 -1
12 12.03 11.38 10.83 0 -1
13∗ 10.31 14.75 13.27 0 -1

* Vital loads requiring uninterrupted post-contingency service.

B. Single Scenario OPF (No Contingencies: S = {0})
Herein, we apply the single scenario OPF problem (4)

to the synthesized 14-bus DC network to find the optimal
operational cost of single scenario in the case where the
network components are all connected. This case is regarded
as static OPF. If no set-points are dictated, the local controllers
automatically arrive to a feasible operating condition with a
total cost of 24927. Upon enforcing the outcome of static
OPF, this cost is reduced to 20188, corresponding to 19.012%
reduction. The main goal of a local controller of a power con-
verter is to ensure its stable operation in voltage tracking and
meeting the load demand. Local controllers are not concerned
with the optimal operation of DC network. Hence, the total
cost obtained via local controllers can always be reduced by
imposing the optimality constraints. The average computation
time for each round of static OPF is roughly 1.5 s.

Next, the problem (10a)-(10p) is solved to determine the
optimal network topology while all of the nodal components
remain connected, i.e., xmin = xmax = 1, zmin = zmax =
1, x~

~

min = 0, x~

~

max = 1. Based on the outcome of (10a)–
(10p), the lines 4-5, 4-9, 5-6, 6-12 are disconnected. This
switching decision further engages the cheap converters (that
are located at buses 3 and 6) and allows them operate at their
maximum capacity. Herein, the total generational cost reduces
to 19638 which is 2.725% smaller compared to static OPF. The
determination of optimal line statuses by solving the MISOCP
relaxation of problem (10) takes 15 s.

Next, instead of line switching, we optimize the decision
of switching in/out power electronic devices that interface
sources by solving the problem (10) with xmin =xmax = 1,
x~

~

min = x~

~

max = 1, zmin
c = zmax

c = 1 for every c ∈ Cload,
and zmin

c = 0, zmax
c = 1 for every c∈Csource. Then, the most

expensive converter at bus 2 is disconnected while all of the
vital and non-vital loads remain connected. This reduces the
total generational cost to 18367 resulting in 9.023% reduction
compared to static OPF. The average time for optimizing
the decision of switching in/out power electronic devices that
interface sources is 1.8 s.

C. Load-Shedding in Response to Single Converter Outages

To demonstrate the importance of recourse actions in the
event of source outages, Figures 6 (a)-(c) show unregulated
network behavior in response to a single converter outages.
Such undesired and oscillatory responses show the importance
of corrective actions to meet resiliency requirements. Herein,

p 
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W
)

p 
(k

W
)

p 
(k

W
)

(a) (b) (c)
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120

160 160 160

0.5 1.0 21.5 0.5 1.0 21.5 0.5 1.0 21.5
Time (s) Time (s) Time (s)

p2 p3 p6 p8p1 p2 p3 p6 p8p1p2 p3 p6 p8p1

Figure 6. Converter powers when converter outage occurs without load-
shedding: (a) Outage at bus 1, (b) Outage at bus 2, and (c) Outage at bus
3.

we solve the problem (13) with the goal of making the network
immune to 5 contingency scenario, each corresponding to
the outage of a single converter. This single converter is
chosen randomly among existing five converters. Here, we
do not allow changes in network topology or commitment
of converters, but only disconnection of non-vital loads in
the event of an outage. Consideration of contingency cases
increases the generation cost during normal conditions to
23557, which is 16.68% more as compared to static OPF,
as constraints (13o), (13p) and (13q) are highly restrictive and
do not allow sudden voltage and power changes. Figures 7
(a)-(c) show the effects of three different converters outages
out of five contingency case. For example, in response to the
outage of the converter at bus 1 at time t = 0.5, the non-
vital loads at buses 1 and 4 are shed to sustain the network
operation as demonstrated in Figure 7 (a). Figures 7 (b)-
(c) show the results for converter outages at bus 3, and 6,
respectively. Observe that voltage and power variations in
transition to each contingency case does not exceeds 7.5 V
and 15 kW, respectively, as dictated by constraints in (13o),
(13p) and (13q). Pre-determination of load-shedding decisions
in response to single converter outages requires 1.8 s.

D. Load-Shedding in Response to Multi-Converter Outages
This study evaluates the design of load-shedding recourse

actions in order to achieve immunity against concurrent outage
of two converters. These converters are chosen randomly
among existing five converters. For brevity, we demonstrate
only four contingency scenarios. These contingencies involve
the concurrent outage of converters located at: (i) buses 1 and
8, (ii) buses 2 and 8, (iii) buses 3 and 8, and (iv) buses 6 and
8. As expected, this resiliency requirement rises the total pre-
contingency generation cost to 23656, which is 17.18% more
as compared to the static OPF. In response to contingency (i),
the non-vital loads at buses 1 and 4 are shed as demonstrated
in Figure 8 (a). In Figure 8 (d), the contingency (ii) is shown in
which case among all of the non-vital loads, only the constant
power load at bus 1 is supplied. The output power at bus 2 is
bounded by the power-ramp constraint as shown in Figures 8
(a), (c), and (d). In this experiment, the determination of load-
shedding decisions requires 1.2 s on average.

E. Corrective Actions to Mitigate Multi-Component Outages
Herein, load-shedding recourse actions are investigated

to achieve immunity against multi-component outages, i.e.,
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Figure 7. Load-shedding in response to single converter outages at selected
buses: (a) Bus 1, (b) Bus 3, (c) Bus 6.

concurrent failure of one converter and two lines that are
chosen at random. Herein, only five contingency scenarios are
accommodated each involving concurrent line and converter
outages. In all contingency cases the line 4-7 is subject to
failure in addition to: (i) the converter at bus 1 (ii) line 4-
9, and converter at bus 2 (iii) line 5-6, and converter at
bus 3 (iv) line 6-11, and converter at bus 6 (v) line 6-
12, and converter at bus 8, respectively. Immunity to the
aforementioned contingencies come at an increased total pre-
contingency generation cost of 22567 which is 11.784% higher
than the static OPF case. Unlike before, in this experiment,
we encountered inexact SOCP relaxations and imposed the
penalty coefficient ε = 10−3 leading to a fully feasible
solution with less than 0.89% gap from global optimality.
Load-shedding decisions as well as converter voltage/power
variations in transition to each contingency are demonstrated
in Figures 10 (a)-(d). Solving each round of MISOCP in this
case takes 1.8 s.

To study the choice of the penalty coefficient ε, the cost
value of the objective function is plotted in Figures 9 (a)-(b)
against the penalty coefficient. Figures 9 (a)-(b) demonstrate
the effects of the penalty term in (17) for two cases when (i)
exact SOCP relaxation is procurable regardless of the choice
of the penalty coefficient, (ii) proper choice of the penalty
coefficient is needed for a feasible solution, respectively.
Figure 9 (b) shows that penalty coefficient ε can be chosen
from a relatively large interval which can lead better near-
global solution with a fixed optimal cost.

It should be noted that the solution obtained without any
penalty term (ε = 0) does not satisfy the feasibility criterion,
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Figure 8. Load-shedding decisions in response to multi-converter outages at:
(a) Buses 1 and 8, (b) Buses 2 and 8, (c) Buses 3 and 8, (d) Buses 6 and 8.
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Figure 9. The effect of the penalty coefficient for: (a) Static OPF (Section
VI.B), and (b) Load-shedding in response to multi-component outages (Sec-
tion VI.E).

max(|wl−
√
uiuj | ≤ 10−6), in Figure 9 (b). The optimal cost

value of this solution, fopt, is lower-bounded by the branch-
and-bound search and upper-bounded by the optimal cost value
obtained with a penalty term, fε. In fact, fε is defined as the
total generation cost associated with the solution that satisfies
the feasibility criterion. The gap from global optimality (in
percentage) is computed as |fopt−fε|fε

× 100.

F. Effects of Linear Valid Inequalities

In this section, the effects of linear valid inequalities (7a)–
(7b) are evaluated in the absence of the objective function,
(4), (10), and (13a) in the case of a contingency. The one
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Figure 10. Load-shedding decisions in response to the outage of: (a) Converter
at bus 1 and line between buses 4-7, (b) Converter at bus 2 and lines between
buses 4-7 and 4-9, (c) Converter at bus 3 and lines between buses 4-7 and
5-6, and (d) Converter at bus 6 and lines between buses 4-7 and 6-11.

of the reasons behind using linear valid inequalities is to
prevent the solution from becoming wl = −√uiuj . This can
happen often in contingency cases since there is no cost to
direct wl towards the boundary of √uiuj . To see the effects
of linear valid inequalities, we have used (4) without linear
valid inequalities (7a)–(7b), and replaced the vectors of cost
coefficients with γ = β = α = 0. It is seen that the
maximum nodal mismatch, max(|wl −

√
uiuj |) = 0.00369,

becomes intolerable. We have repeated the same procedure
for the example shown in Section VI.E. Herein, we have
removed the penalty term as well and observed that the
maximum nodal mismatch is max(|wl −

√
uiuj |) = 0.00488.

With the help of valid inequalities, this mismatch reduces to
max(|wl −

√
uiuj |) = 0.00217. It can be seen in Figure 9

(b) that a proper choice of penalty coefficient brings maxi-
mum nodal mismatch within the limits of feasibility criterion.
This penalty coefficient would satisfy the feasibility criterion,
max(|wl −

√
uiuj |) = 3.17× 10−7, even without linear valid

inequalities. However, these inequalities further strengthen the
relaxation and bring the maximum nodal mismatch even lower
max(|wl −

√
uiuj |) = 2.26× 10−8.

G. Implementation with Larger Benchmarks

In this section, we have conducted a series of numerical
experiments on a collection of modified IEEE, European, and
Polish benchmarks to study the scalability of the proposed
approach. First, we consider the static OPF problem (4) for
the modified (transformed into a DC benchmark) IEEE 118
and 300-bus systems, European 1354pegase system, and Polish
3012wp system. Then, we consider network reconfiguration
problem (10) for the modified IEEE 118 and 300-bus systems
in order to optimize the decision of switching in/out power
electronic devices that interface sources. The static OPF objec-
tive values for the IEEE 118 and 300-bus systems, European
1354pegase system, and Polish 3012wp system are 2189.3,
9140.9, 1582.5, and 24583.4, respectively. The maximum
nodal mismatches for these cases are 1.63×10−7, 8.20×10−7,
2.95 × 10−7, and 6.25 × 10−7, respectively. Moreover, the
average required computation times for these benchmarks are
roughly 1.8, 1.9, 4.7, and 16 s, respectively.

Next, these benchmarks have been used to study the scala-
bility of the network reconfiguration problem (10). For the
modified 118-bus system, 7 out of 54 power electronics
converters are switched out upon enforcing the solutions of
network reconfiguration problem. The total generational cost
is reduced to 2175.6, which is 0.623% less compared to
the case with static OPF. For the modified 300-bus system,
6 out of 69 power electronics converters are switched out
of the network per the solution of network reconfiguration
problem. These binary decisions over the operational status of
power electronic converters reduce the total generational cost
to 9135.8, which is 0.055% less than the cost obtained by static
OPF. The average time to optimize the decision of switching
in/out power electronic devices for modified 118 and 300-
bus systems are 4.5 and 77 s, respectively. We have observed
that solving network reconfiguration problem for 1354pegase,
3012wp, or larger benchmark systems in a polynomial time is
the limitation of the proposed approach.

VII. CONCLUSION

This paper addresses optimal and secure reconfiguration of
converter-dominated DC distribution networks. The proposed
optimization framework provides local voltage set points
for power electronics converters as well as the operational
status of network components for normal operation and in
response to contingencies. The problem is formulated as a
MINLP and embodies two types of non-convexities due to
the quadratic power flow equations and the integration of
switching decisions. We relax this problem into tractable
MISOCP that can be solved using standard branch-and-bound
solvers. The quality of the proposed MISOCP formulation is
strengthened via two additional linear valid inequalities. The
experimental results verify the efficacy of the proposed method
in determining voltage set-points as well as the on/off status
of lines, sources, and non-vital loads.
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